Efficient Model Synchronization with Precedence Triple Graph Grammars

  • Marius Lauder
  • Anthony Anjorin
  • Gergely Varró
  • Andy Schürr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7562)

Abstract

Triple Graph Grammars (TGGs) are a rule-based technique with a formal background for specifying bidirectional and incremental model transformation. In practical scenarios, unidirectional rules for incremental forward and backward transformation are automatically derived from the TGG rules in the specification, and the overall transformation process is governed by a control algorithm. Current incremental implementations either have a runtime complexity that depends on the size of related models and not on the number of changes and their affected elements, or do not pursue formalization to give reliable predictions regarding the expected results. In this paper, a novel incremental model synchronization algorithm for TGGs is introduced, which employs a static analysis of TGG specifications to efficiently determine the range of influence of model changes, while retaining all formal properties.

Keywords

triple graph grammars model synchronization control algorithm of incremental transformations node precedence analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon: Leveraging EMF and Professional CASE Tools. In: Heiß, H.U., Pepper, P., Schlingloff, H., Schneider, J. (eds.) Informatik 2011. LNI, vol. 192, p. 281. GI, Bonn (2011)Google Scholar
  2. 2.
    Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–318. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Berlin (2006)MATHGoogle Scholar
  5. 5.
    Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models. Tech. Rep. 28, Universitätsverlag Potsdam (2009)Google Scholar
  6. 6.
    Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal Semantics and Implementation of Triple Graph Grammars. In: MoDeVVA 2010, pp. 19–24. IEEE, New York (2010)Google Scholar
  7. 7.
    Greenyer, J., Pook, S., Rieke, J.: Preventing Information Loss in Incremental Model Synchronization by Reusing Elements. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent Model Synchronization with Conflict Resolution Based on Triple Graph Grammars. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 178–193. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of Model Synchronization Based on Triple Graph Grammars. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory Model Transformations. In: Schürr, A., Zündorf, A. (eds.) Fujaba Days 2004, pp. 35–38. Paderborn (2004)Google Scholar
  11. 11.
    Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Bidirectional Model Transformation with Precedence Triple Graph Grammars. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 287–302. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Stevens, P.: Towards an Algebraic Theory of Bidirectional Transformations. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 1–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing Concurrent Model Updates Based on Bidirectional Transformation. SoSyM, 1–16 (2011) (Online FirstTM, January 4, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marius Lauder
    • 1
  • Anthony Anjorin
    • 1
  • Gergely Varró
    • 1
  • Andy Schürr
    • 1
  1. 1.Real-Time Systems LabTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations