Rational Term Rewriting Revisited: Decidability and Confluence

  • Takahito Aoto
  • Jeroen Ketema
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7562)

Abstract

We consider a variant of rational term rewriting as first introduced by Corradini et al., i.e., we consider rewriting of (infinite) terms with a finite number of different subterms. Motivated by computability theory, we show a number of decidability results related to the rewrite relation and prove an effective version of a confluence theorem for orthogonal systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ariola, Z.M., Klop, J.W.: Equational Term Graph Rewriting. Fundamenta Informaticae 26, 207–240 (1996)MathSciNetMATHGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Google Scholar
  3. 3.
    Barendsen, E.: Term Graph Rewriting. In: Terese (ed.) [17], ch. 13, pp. 712–743Google Scholar
  4. 4.
    Corradini, A.: Term Rewriting in CT Σ. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 468–484. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Corradini, A., Drewes, F.: Term Graph Rewriting and Parallel Term Rewriting. In: TERMGRAPH 2011. EPTCS, vol. 48, pp. 3–18 (2011)Google Scholar
  6. 6.
    Corradini, A., Gadducci, F.: Rational Term Rewriting. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 156–171. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Courcelle, B.: Fundamental Properties of Infinite Trees. Theoretical Computer Science 25(2), 95–169 (1983)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Endrullis, J., Grabmayer, C., Hendriks, D., Klop, J.W., van Oostrom, V.: Unique Normal Forms in Infinitary Weakly Orthogonal Rewriting. In: RTA 2010. LIPIcs, vol. 6, pp. 85–102. Schloss Dagstuhl (2010)Google Scholar
  9. 9.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial Algebra Semantics and Continuous Algebras. Journal of the ACM 24(1), 68–95 (1977)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Inverardi, P., Zilli, M.V.: Rational Rewriting. In: Privara, I., Ružička, P., Rovan, B. (eds.) MFCS 1994. LNCS, vol. 841, pp. 433–442. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.-J.: On the Adequacy of Graph Rewriting for Simulating Term Rewriting. ACM Transactions on Programming Languages and Systems 16(3), 493–523 (1994)CrossRefGoogle Scholar
  12. 12.
    Kennaway, R., de Vries, F.-J.: Infinitary Rewriting. In: Terese (eds.) [17], ch. 12, pp. 668–711Google Scholar
  13. 13.
    Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.-J.: Transfinite Reductions in Orthogonal Term Rewriting Systems. Information and Computation 119(1), 18–38 (1995)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Ketema, J., Simonsen, J.G.: Computing with Infinite Terms and Infinite Reductions (unpublished manuscript)Google Scholar
  15. 15.
    Plump, D.: Collapsed Tree Rewriting: Completeness, Confluence, and Modularity. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 97–111. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Plump, D.: Term Graph Rewriting. In: Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2, pp. 3–61. World Scientific (1999)Google Scholar
  17. 17.
    Terese (ed.): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press (2003)Google Scholar
  18. 18.
    Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Takahito Aoto
    • 1
  • Jeroen Ketema
    • 2
  1. 1.RIEC, Tohoku UniversitySendaiJapan
  2. 2.Department of ComputingImperial College LondonLondonUnited Kingdom

Personalised recommendations