Bounded-Contention Coding for Wireless Networks in the High SNR Regime

  • Keren Censor-Hillel
  • Bernhard Haeupler
  • Nancy Lynch
  • Muriel Médard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)

Abstract

Efficient communication in wireless networks is typically challenged by the possibility of interference among several transmitting nodes. Much important research has been invested in decreasing the number of collisions in order to obtain faster algorithms for communication in such networks.

This paper proposes a novel approach for wireless communication, which embraces collisions rather than avoiding them, over an additive channel. It introduces a coding technique called Bounded-Contention Coding (BCC) that allows collisions to be successfully decoded by the receiving nodes into the original transmissions and whose complexity depends on a bound on the contention among the transmitters.

BCC enables deterministic local broadcast in a network with n nodes and at most a transmitters with information of ℓ bits each within O(alogn + aℓ) bits of communication with full-duplex radios, and O((alogn + aℓ)(logn)) bits, with high probability, with half-duplex radios. When combined with random linear network coding, BCC gives global broadcast within O((D + a + logn)(alogn + ℓ)) bits, with high probability. This also holds in dynamic networks that can change arbitrarily over time by a worst-case adversary. When no bound on the contention is given, it is shown how to probabilistically estimate it and obtain global broadcast that is adaptive to the true contention in the network.

Keywords

wireless networks high SNR coding additive channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. Journal of Computer and System Sciences 43, 290–298 (1991)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Amaudruz, A., Fragouli, C.: Combinatorial algorithms for wireless information flow. In: SODA (2009)Google Scholar
  3. 3.
    Avestimehr, A.S., Diggavi, S.N., Tse, D.N.C.: Wireless network information flow: A deterministic approach. IEEE Transactions on Information Theory 57(4), 1872–1905 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multi-hop radio networks. SIAM Journal on Computing 22, 875–887 (1993)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bienkowski, M., Klonowski, M., Korzeniowski, M., Kowalski, D.R.: Dynamic sharing of a multiple access channel. In: Marion, J.-Y., Schwentick, T. (eds.) 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010). Leibniz International Proceedings in Informatics (LIPIcs), vol. 5, pp. 83–94. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2010)Google Scholar
  7. 7.
    Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient Distributed Communication in Ad-Hoc Radio Networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 613–624. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Clementi, A.E.F., Monti, A., Pasquale, F., Silvestri, R.: Broadcasting in dynamic radio networks. J. Comput. Syst. Sci. 75(4), 213–230 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cornejo, A., Newport, C.: Prioritized gossip in vehicular networks. In: Proceedings of the 6th ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile Computing (DIALM-POMC 2010), Cambridge, MA (September 2010)Google Scholar
  10. 10.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), p. 492 (2003)Google Scholar
  11. 11.
    Czyzowicz, J., Gasieniec, L., Kowalski, D.R., Pelc, A.: Consensus and mutual exclusion in a multiple access channel. IEEE Transactions on Parallel and Distributed Systems 22(7), 1092–1104 (2011)CrossRefGoogle Scholar
  12. 12.
    De Marco, G.: Distributed broadcast in unknown radio networks. SIAM Journal of Computing 39, 2162–2175 (2010)MATHCrossRefGoogle Scholar
  13. 13.
    Effros, M., Médard, M., Ho, T., Ray, S., Karger, D., Koetter, R.: Linear network codes: A unified framework for source channel, and network coding. In: Proceedings of the DIMACS workshop on Network Information Theory (2003) (invited paper)Google Scholar
  14. 14.
    Erez, E., Xu, Y., Yeh, E.M.: Coding for the deterministic network model. In: Allerton Conference on Communication, Control and Computing (2010)Google Scholar
  15. 15.
    Goemans, M.X., Iwata, S., Zenklusen, R.: An algorithmic framework for wireless information flow. In: Proceedings of Allerton Conference on Communication, Control, and Computing (2009)Google Scholar
  16. 16.
    Gollakota, S., Katabi, D.: Zigzag decoding: combating hidden terminals in wireless networks. In: SIGCOMM, pp. 159–170 (2008)Google Scholar
  17. 17.
    Haeupler, B., Karger, D.: Faster information dissemination in dynamic networks via network coding. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC 2011), San Jose, CA, pp. 381–390 (June 2011)Google Scholar
  18. 18.
    Haeupler, B.: Analyzing network coding gossip made easy. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 293–302. ACM, New York (2011)Google Scholar
  19. 19.
    Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast. IEEE Transactions on Information Theory 52(10), 4413–4430 (2006)CrossRefGoogle Scholar
  20. 20.
    Hui, J., Humblet, P.: The capacity region of the totally asynchronous multiple-access channel. IEEE Transactions on Information Theory 31(2), 207–216 (1985)MATHCrossRefGoogle Scholar
  21. 21.
    Jurdziński, T., Stachowiak, G.: Probabilistic Algorithms for the Wakeup Problem in Single-Hop Radio Networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 535–549. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Khabbazian, M., Kowalski, D.: Time-efficient randomized multiple-message broadcast in radio networks. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC 2011), San Jose, California, June 6-8 (2011)Google Scholar
  23. 23.
    Khabbazian, M., Kowalski, D., Kuhn, F., Lynch, N.: Decomposing broadcast algorithms using Abstract MAC layers. In: Proceedings of Sixth ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile Computing (DIALM-POMC 2010), Cambridge, MA (September 2010)Google Scholar
  24. 24.
    Kim, M., Erez, E., Edmund, M., Médard, M.: Deterministic network model revisited: An algebraic network coding approach. CoRR, abs/1103.0999 (2011)Google Scholar
  25. 25.
    Kim, M., Médard, M.: Algebraic network coding approach to deterministic wireless relay network. In: Allerton Conference on Communication, Control and Computing (2010)Google Scholar
  26. 26.
    Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Transaction on Networking 11, 782–795 (2003)CrossRefGoogle Scholar
  27. 27.
    Komlós, J., Greenberg, A.G.: An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Transactions on Information Theory 31(2), 302–306 (1985)MATHCrossRefGoogle Scholar
  28. 28.
    Kowalski, D.R., Pelc, A.: Kowalski and Andrzej Pelc. Broadcasting in undirected ad hoc radio networks. Distribed Computing 18, 43–57 (2005)CrossRefGoogle Scholar
  29. 29.
    Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pp. 513–522 (2010)Google Scholar
  30. 30.
    Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, San Jose, California, June 6-8 (2011)Google Scholar
  31. 31.
    Kuhn, F., Oshman, R.: The Complexity of Data Aggregation in Directed Networks. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 416–431. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Kushilevitz, E., Mansour, Y.: An Ω(Dlog(N/D)) lower bound for broadcast in radio networks. In: Proceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing (PODC 1993), pp. 65–74. ACM, New York (1993)CrossRefGoogle Scholar
  33. 33.
    Martel, C.U.: Maximum finding on a multiple access broadcast network. Information Processing Letters 52(1), 7–15 (1994)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Medard, M., Huang, J., Goldsmith, A.J., Meyn, S.P., Coleman, T.P.: Capacity of time-slotted aloha packetized multiple-access systems over the awgn channel. IEEE Transactions on Wireless Communications 3(2), 486–499 (2004)CrossRefGoogle Scholar
  35. 35.
    O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing, DIALM-POMC 2005, pp. 104–110. ACM, New York (2005)CrossRefGoogle Scholar
  36. 36.
    ParandehGheibi, A., Sundararajan, J.-K., Médard, M.: Collision helps - algebraic collision recovery for wireless erasure networks. In: WiNC (2010)Google Scholar
  37. 37.
    Peleg, D.: Time-Efficient Broadcasting in Radio Networks: A Review. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 1–18. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Shi, C., Ramamoorthy, A.: Improved combinatorial algorithms for wireless information flow. In: Proceedings of Allerton Conference on Communication, Control, and Computing (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Keren Censor-Hillel
    • 1
  • Bernhard Haeupler
    • 1
  • Nancy Lynch
    • 1
  • Muriel Médard
    • 2
  1. 1.Massachusetts Institute of TechnologyCSAILUSA
  2. 2.Massachusetts Institute of TechnologyRLEUSA

Personalised recommendations