Advertisement

Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology

  • Ofer Feinerman
  • Amos Korman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)

Abstract

Initial knowledge regarding group size can be crucial for collective performance. We study this relation in the context of the Ants Nearby Treasure Search (ANTS) problem [18], which models natural cooperative foraging behavior such as that performed by ants around their nest. In this problem, k (probabilistic) agents, initially placed at some central location, collectively search for a treasure on the two-dimensional grid. The treasure is placed at a target location by an adversary and the goal is to find it as fast as possible as a function of both k and D, where D is the (unknown) distance between the central location and the target. It is easy to see that T = Ω(D + D 2/k) time units are necessary for finding the treasure. Recently, it has been established that O(T) time is sufficient if the agents know their total number k (or a constant approximation of it), and enough memory bits are available at their disposal [18]. In this paper, we establish lower bounds on the agent memory size required for achieving certain running time performances. To the best our knowledge, these bounds are the first non-trivial lower bounds for the memory size of probabilistic searchers. For example, for every given positive constant ε, terminating the search by time O(log1 − ε k ·T) requires agents to use Ω(loglogk) memory bits.

From a high level perspective, we illustrate how methods from distributed computing can be useful in generating lower bounds for cooperative biological ensembles. Indeed, if experiments that comply with our setting reveal that the ants’ search is time efficient, then our theoretical lower bounds can provide some insight on the memory they use for this task.

Keywords

Mobile Agent Competitive Algorithm Theoretical Computer Science Graph Exploration Coin Toss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamental distributed computing problem. Science 331(6014), 183–185 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, 319 p. Kluwer (now Springer) Academic Publishers (2003)Google Scholar
  3. 3.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. on Computing 29, 1164–1188 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Averbakh, I., Berman, O.: (p − 1)/(p + 1)-approximate algorithms for p-traveling salesmen problems on a tree with minmax objective. Discr. Appl. Mathematics 75, 201–216 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in The Plane. Information and Computation 106(2), 234–252 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berkolaiko, G., Havlin, S.: Territory covered by N Levy flights on d-dimensional lattices. Physical Review. E 55(2), 1395–1400 (1999)CrossRefGoogle Scholar
  7. 7.
    Bialek, W.: Physical limits to sensation and perception. Annual Review of Biophysics and Biophysical Chemistry 16, 455–478 (1987)CrossRefGoogle Scholar
  8. 8.
    Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. In: Proc. 23th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233–240 (2012)Google Scholar
  9. 9.
    Le Breton, J., Fourcassié, V.: Information transfer during recruitment in the ant Lasius niger L (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology 55(3), 242–250 (2004)CrossRefGoogle Scholar
  10. 10.
    Burroughs, N.J., de, M., de Oliveira, B.M.P.M., Adrego, P.A.: Regulatory Tcell adjustment of quorum growth thresholds and the control of local immune responses. J. of Theoretical Biology 241, 134–141 (2006)CrossRefGoogle Scholar
  11. 11.
    Chazelle, B.: Natural algorithms. In: SODA 2009, pp. 422–431 (2009)Google Scholar
  12. 12.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-Guided Graph Exploration by a Finite Automation. ACM Transactions on Algorithms (TALG) 4(4) (2008)Google Scholar
  13. 13.
    Dessmark, A., Pelc, A.: Optimal Graph Exploration without Good Maps. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 374–386. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. In: SODA 2002, pp. 588–597 (2002)Google Scholar
  15. 15.
    Emek, Y., Fraigniaud, P., Korman, A., Rosen, A.: Online Computation with Advice. Theoretical Computer Science (TCS) 412(24), 2642–2656 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Feare, C.J., Dunnet, G.M., Patterson, I.J.: Ecologicalstudies of the rook (Corvus frugilegus L.) in north-east Scotland; Food intake and feeding behaviour. J. of Applied Ecology 11, 867–896 (1974)CrossRefGoogle Scholar
  17. 17.
    Feinerman, O., Jentsch, G., Tkach, K.E., Coward, J.W., Hathorn, M.M., Sneddon, M.W., Emonet, T., Smith, K.A., Altan-Bonnet, G.: Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Molecular Systems Biology 6(437) (2010)Google Scholar
  18. 18.
    Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the Plane without Communication. To appear in PODC 2012 (2012)Google Scholar
  19. 19.
    Feinerman, O., Veiga, J., Dorfman, J.R., Germain, R.N., Altan-Bonnet, G.: Variability and robustness in T Cell activation from regulated heterogeneity in protein levels. Science 321(5892), 1081–1084 (2008)CrossRefGoogle Scholar
  20. 20.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. TCS 411, 1583–1598 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective Tree Exploration. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication tasks. In: PODC 2006, pp. 179–187 (2006)Google Scholar
  24. 24.
    Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Fraigniaud, P., Korman, A., Lebhar, E.: Local MST Computation with Short Advice. Theory of Computing Systems (ToCS) 47(4), 920–933 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: FOCS 2011 (2011)Google Scholar
  27. 27.
    Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: SODA (2007)Google Scholar
  28. 28.
    Giraldeau, L.A., Carco, T.: Social Foraging Theory (2000)Google Scholar
  29. 29.
    Gordon, D.M.: The regulation of foraging activity in red harvester ant colonies. The American Naturalist 159(5), 509–518 (2002)CrossRefGoogle Scholar
  30. 30.
    Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLOS Computational Biology 3(10), e189 (2007), doi:10.1371/journal.pcbi.0030189Google Scholar
  31. 31.
    Hanusse, N., Kavvadias, D.J., Kranakis, E., Krizanc, D.: Memoryless search algorithms in a network with faulty advice. TCS 402(2-3), 190–198 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Harkness, R.D., Maroudas, N.G.: Central place foraging by an ant (Cataglyphis bicolor Fab.): a model of searching. Animal Behavior 33(3), 916–928 (1985)CrossRefGoogle Scholar
  33. 33.
    Janeway, C.A., Travers, P., Walport, M., Shlomchik Immunobiology, M.J.: The Immune System in Health and Disease. Garland Science, New Yoy (2001)Google Scholar
  34. 34.
    Kao, M., Reif, J.H., Tate, S.R.: Searching in an Unknown Environment: An Optimal Randomized Algorithm for the Cow-Path Problem. J. of Inf. Comput., 63–79 (1996)Google Scholar
  35. 35.
    Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms: Removing Assumptions Concerning Global Knowledge. In: PODC 2011 (2011)Google Scholar
  36. 36.
    Korman, A., Kutten, S.: Distributed Verification of Minimum Spanning Trees. Distributed Computing (DC) 20(4) (2007)Google Scholar
  37. 37.
    Korman, A., Kutten, S., Peleg, D.: Proof Labeling Schemes. Distributed Computing (DC) 22(4) (2010)Google Scholar
  38. 38.
    Krebs, J.: Optimal foraging, predation risk and territory defense. Ardea 68, 83–90 (1980), Nederlandse Ornithlogische UnieGoogle Scholar
  39. 39.
    López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: CCCG 2011, pp. 125–128 (2001)Google Scholar
  40. 40.
    Orians, G.F., Pearson, N.E.: On the theory of central place foraging. Analysis of Ecological Systems, 155–177 (1979)Google Scholar
  41. 41.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. of Algorithms 33, 281–295 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Polycarpouy, M.M., Yang, Y., Passinoz, K.M.: A Cooperative Search Framework for Distributed Agents. In: Intelligent Control, pp. 1–6 (2001)Google Scholar
  43. 43.
    Pratt, S.C.: Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behavioral Ecology 16(2), 488–496 (2005)CrossRefGoogle Scholar
  44. 44.
    Rieke, F., Warland, D., Bialek, W.: Coding efficiency and information rates in sensory neurons. Europhysics Letters 22(2), 15–156 (1993)CrossRefGoogle Scholar
  45. 45.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)Google Scholar
  46. 46.
    Reynolds, A.M.: Cooperative random Lévy flight searches and the flight patterns of honeybees. Physics Letters A 354, 384–388 (2006)CrossRefGoogle Scholar
  47. 47.
    Reynolds, A.M.: Optimal random Lévy-loop searching: New insights into the searching behaviours of central-place foragers. European Physics Letters 82(2), 20001 (2008)CrossRefGoogle Scholar
  48. 48.
    Sommer, S., Wehner, R.: The ant’s estimation of distance travelled: experiments with desert ants, Cataglyphis fortis. J. of Comparative Physiology A 190(1), 1–6 (2004)CrossRefGoogle Scholar
  49. 49.
    Srinivasan, M.V., Zhang, S., Altwein, M., Tautz, J.: Honeybee Navigation: Nature and Calibration of the Odometer. Science 287, 851–853 (2000)CrossRefGoogle Scholar
  50. 50.
    Surette, M.G., Miller, M.B., Bassler, B.L.: Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. National Acadamy of Science 96, 1639–1644 (1999)CrossRefGoogle Scholar
  51. 51.
    Town, C.D., Gross, J.D., Kay, R.R.: Cell differentiation without morphogenesis in Dictyostelium discoideum. Nature 262, 717–719 (1976)CrossRefGoogle Scholar
  52. 52.
    Wehner, R., Meier, C., Zollikofer, C.: The ontogeny of foraging behaviour in desert ants, Cataglyphis bicolor. Ecol. Entomol. 29, 240–250 (2004)CrossRefGoogle Scholar
  53. 53.
    Wehner, R., Srinivasan, M.Y.: Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J. of Comparative Physiology 142(3), 315–338 (1981)CrossRefGoogle Scholar
  54. 54.
    Zahavi, A.: The function of pre-roost gatherings and communal roosts. Ibis 113, 106–109 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ofer Feinerman
    • 1
  • Amos Korman
    • 2
  1. 1.Incumbent of the The Louis and Ida Rich Career Development ChairThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.CNRS and University Paris DiderotFrance

Personalised recommendations