Brief Announcement: A Contention-Friendly, Non-blocking Skip List

  • Tyler Crain
  • Vincent Gramoli
  • Michel Raynal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)


A skip list is a probabilistic data structure to store and retrieve in-memory data in an efficient way. In short, it is a linked structure that diminishes the linear big-oh complexity of a linked list with elements having additional shortcuts pointing towards other elements located further in the list [7]. These shortcuts allow operations to complete in O(logn) steps in expectation. The drawback of employing shortcuts is however to require additional maintenance each time some data is stored or discarded.


  1. 1.
    Crain, T., Gramoli, V., Raynal, M.: A contention-friendly, non-blocking skip list. Technical Report RR-7969, IRISA (May 2012)Google Scholar
  2. 2.
    Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In: PPoPP (2012)Google Scholar
  3. 3.
    Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC (2004)Google Scholar
  4. 4.
    Fraser, K.: Practical lock freedom. PhD thesis. Cambridge University (September 2003)Google Scholar
  5. 5.
    Harris, T.L.: A Pragmatic Implementation of Non-blocking Linked-Lists. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, p. 300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets. In: SPAA, pp. 73–82 (2002)Google Scholar
  7. 7.
    Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33 (June 1990)Google Scholar
  8. 8.
    Sundell, H., Tsigas, P.: Scalable and lock-free concurrent dictionaries. In: SAC (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tyler Crain
    • 1
  • Vincent Gramoli
    • 2
  • Michel Raynal
    • 1
    • 3
  1. 1.IRISARennes CedexFrance
  2. 2.The University of SydneyAustralia
  3. 3.Institut Universitaire de FranceFrance

Personalised recommendations