Towards an Integrated Approach for Evaluating Textual Complexity for Learning Purposes

  • Mihai Dascălu
  • Stefan Trausan-Matu
  • Philippe Dessus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7558)


Understanding a text in order to learn is subject to modeling and is partly dependent to the complexity of the read text. We transpose the evaluation process of textual complexity into measurable factors, identify linearly independent variables and combine multiple perspectives to obtain a holistic approach, addressing lexical, syntactic and semantic levels of textual analysis. Also, the proposed evaluation model combines statistical factors and traditional readability metrics with information theory, specific information retrieval techniques, probabilistic parsers, Latent Semantic Analysis and Support Vector Machines for best-matching all components of the analysis. First results show a promising overall precision (>50%) and near precision (>85%).


textual complexity Latent Semantic Analysis readability Support Vector Machines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McNamara, D.S., Louwerse, M.M., McCarthy, P.M., Graesser, A.C.: Coh-Metrix: Capturing linguistic features of cohesion. Discourse Processes 47(4), 292–330 (2010)CrossRefGoogle Scholar
  2. 2.
    Schulze, M.: Measuring textual complexity in student writing. In: Proc. AAAL, Atlanta (2010)Google Scholar
  3. 3.
    Trausan-Matu, S., Dascalu, M., Dessus, P.: Textual Complexity and Discourse Structure in Computer-Supported Collaborative Learning. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 352–357. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Page, E.: The imminence of grading essays by computer. Phi Delta Kappan 47, 238–243 (1966)Google Scholar
  5. 5.
    Trausan-Matu, S., Rebedea, T.: A Polyphonic Model and System for Inter-animation Analysis in Chat Conversations with Multiple Participants. In: Gelbukh, A. (ed.) CICLing 2010. LNCS, vol. 6008, pp. 354–363. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Gervasi, V., Ambriola, V.: Quantitative assessment of textual complexity. In: Merlini Barbaresi, L. (ed.) Complexity in Language and Text, pp. 197–228. Plus, Pisa (2002)Google Scholar
  7. 7.
    Brown, J.D.: An EFL readability index. JALT Journal 20, 7–36 (1998)Google Scholar
  8. 8.
    Davison, A., Kantor, R.: On the failure of readability formulas to define readable texts: A case study from adaptations. Reading Research Quarterly 17, 187–209 (1982)CrossRefGoogle Scholar
  9. 9.
    Petersen, S.E., Ostendorf, M.: A machine learning approach to reading level assessment. Computer Speech and Language 23, 89–106 (2009)CrossRefGoogle Scholar
  10. 10.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 1–27 (2011)Google Scholar
  11. 11.
    Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: Proceedings of the 41st Meeting of the Association for Computational Linguistics, pp. 423–430 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mihai Dascălu
    • 1
    • 2
  • Stefan Trausan-Matu
    • 1
  • Philippe Dessus
    • 2
  1. 1.Computer Science DepartmentPolitehnica University of BucharestRomania
  2. 2.LSE, UPMF Grenoble-2 & IUFM–UJF Grenoble-1France

Personalised recommendations