Learning Analytics for Learning Blogospheres

  • Manh Cuong Pham
  • Michael Derntl
  • Yiwei Cao
  • Ralf Klamma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7558)

Abstract

In blogospheres the learning process is characterized by evolving roles of bloggers and dynamic change of content. Existing approaches for learning blogospheres do not provide a comprehensive solution to dealing with these dynamics. In this paper, we propose a learning analytics approach for learning blogospheres unifying two complementary perspectives: (1) structural analysis of the blogosphere to identify learners’ social capital; and (2) content analysis to capture dynamics in blog content over time. To support both types of analysis, social network analysis methods are applied as a fundamental approach to analyzing and visualizing knowledge sharing on learning blogospheres. We exemplify the learning analytics approach using two real-world learning blogospheres: the Mediabase – a large blog collection for technology enhanced learning, and the European eTwinning Network – a lifelong learning blogsphere. Results show that both analytics perspectives in combination advocate an advanced learning analytics approach to understanding and assessing learning processes in learning blogospheres.

Keywords

learning analytics content analysis Web 2.0 social network analysis social capital 

References

  1. 1.
    Brooks, C.H., Montanez, N.: An analysis of the effectiveness of tagging in blogs. In: AAAI Spring Symp. on Comput. Approaches to Analyzing Weblogs. AAAI (2005)Google Scholar
  2. 2.
    Burt, R.: Structural Holes: The Social Structure of Competition. Harvard (1995)Google Scholar
  3. 3.
    Coleman, J.S.: Social capital in the creation of human capital. The American Journal of Sociology 94, S95–S120 (1988)Google Scholar
  4. 4.
    Fekete, J.-D., van Wijk, J.J., Stasko, J.T., North, C.: The Value of Information Visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 1–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Harb, A., Plantié, M., Dray, G., Roche, M., Trousset, F., Poncelet, P.: Web opinion mining: how to extract opinions from blogs? In: Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology, CSTST 2008, pp. 211–217. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Hoadley, C.M.: The shape of the elephant: scope and membership of the cscl community. In: Proceedings of th 2005 Conference on Computer Support for Collaborative Learning: Learning 2005: the Next 10 Years!, CSCL 2005, pp. 205–210. International Society of the Learning Sciences (2005)Google Scholar
  7. 7.
    Johnson, L., Smith, R., Willis, H., Levine, A., Haywood, K.: The 2011 Horizon Report. In: The New Media Consortium, Austin, Texas (2011)Google Scholar
  8. 8.
    Kienle, A., Wessner, M.: Analysing and cultivating scientific communities of practice. Int. J. Web Based Communities 2, 377–393 (2006)CrossRefGoogle Scholar
  9. 9.
    Klamma, R.: Emerging research topics in social learning. In: Dirckinck-Holmfeld, L., Hodgson, V., Jones, C., de Laat, M., McConnell, D., Ryberg, T. (eds.) Proceedings of the 7th International Conference on Networked Learning 2010, Aalborg, Denmark, pp. 224–231 (2010)Google Scholar
  10. 10.
    Klamma, R., Cao, Y., Spaniol, M.: Watching the Blogosphere: Knowledge Sharing in the Web 2.0. In: Nicolov, N., Glance, N., Adar, E., Hurst, M., Liberman, M., Martin, J.H., Salvetti, F. (eds.) Proceedings of the 1st International Conference on Weblogs and Social Media, Boulder, Colorado, USA, March 26-28 (2007)Google Scholar
  11. 11.
    Klamma, R., Spaniol, M., Denev, D.: PALADIN: A pattern based approach to knowledge discovery in digital social networks. In: Tochtermann, K., Maurer, H. (eds.) Proceedings of I-KNOW 2006, 6th International Conference on Knowledge Management, Graz, Austria, September 6-8, pp. 457–464. Springer (2006)Google Scholar
  12. 12.
    Kovachev, D., Cao, Y., Klamma, R., Jarke, M.: Learn-as-you-go: New Ways of Cloud-Based Micro-learning for the Mobile Web. In: Leung, H., Popescu, E., Cao, Y., Lau, R.W.H., Nejdl, W. (eds.) ICWL 2011. LNCS, vol. 7048, pp. 51–61. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Laat, M.D., Lally, V., Lipponen, L., Simons, R.-J.: Investigating patterns of interaction in networked learning and computer-supported collaborative learning: A role for social network analysis. I. J. Computer-Supported Collaborative Learning 2(1), 87–103 (2007)CrossRefGoogle Scholar
  14. 14.
    Pham, M., Klamma, R., Jarke, M.: Development of computer science disciplines: a social network analysis approach. Social Network Analysis and Mining, 1–20 (2011), doi:10.1007/s13278-011-0024-xGoogle Scholar
  15. 15.
    Robes, J.: What’s in it for me? Über den Nutzen von Weblogs für Wissensarbeiter. IM - Information Management & Consulting (3) (2005)Google Scholar
  16. 16.
    Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press (2003)Google Scholar
  17. 17.
    Thomas, J.J., Cook, K.A. (eds.): Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Press (2005)Google Scholar
  18. 18.
    Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32(4), 425–443 (1969)CrossRefGoogle Scholar
  19. 19.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  20. 20.
    Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge University Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manh Cuong Pham
    • 1
  • Michael Derntl
    • 1
  • Yiwei Cao
    • 1
  • Ralf Klamma
    • 1
  1. 1.Advanced Community Information Systems (ACIS), Informatik 5RWTH Aachen UniversityAachenGermany

Personalised recommendations