Bacteria for Plant Growth Promotion and Disease Management

  • Brahim BouizgarneEmail author


The present article focuses on the role of free living bacteria in the suppression of soil-borne phytopathogens mainly Pseudomonas, Bacillus, and the actinomycetes. It also focuses on Plant –rhizobacteria interactions are involved in root colonization and molecular and biochemical basis of root colonization. Recently, the plant a ssociated bacteria called plant growth promoting rhizobacteria (PGPR) have received great attention for use as a biofertilizer and/or biopesticides for the sustainability of agro-ecosystems. Due to their deleterious effects on plant health, plant pathogens are one of the major problems for crop productivity. The present paper presents the traits involved in root colonization by rhizobacteria, the most important rhizobacteria and PGPRs used as biocontrol agents, and their role in suppression of plant diseases either in natural disease-suppressive soils or as introduced biocontrol agents for plant disease management. The paper also emphasizes the biochemical and molecular traits involved in disease suppression (production of siderophores, lytic enzymes, antibiotics, and induction of systemic resistance).


Cucumber Mosaic Virus Root Colonization Fusarium Wilt Fluorescent Pseudomonad Plant Growth Promote Rhizobacteria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahl P, Voisard C, Defago G (1986) Iron bound siderophores, cyanic acid, and antibiotics involved in suppression of Thielaviopis basicola by a Pseudomonas fluorescens strain. J Phytopathol 116:121–134CrossRefGoogle Scholar
  2. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181PubMedCrossRefGoogle Scholar
  3. Ahn IP, Park K, Kim CH (2002) Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Mol Cell 13:302–308Google Scholar
  4. Alabouvette C, Höper H, Lemanceau P, Steinberg C (1996) Soil suppressiveness to diseases induced by soil-borne plant pathogens. In: Stotzky G, Bollag J-M (eds) Soil biochemistry. Marcel Dekker, New York, pp 371–413Google Scholar
  5. Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrâtes of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470CrossRefGoogle Scholar
  6. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  7. Amkraz N, Boudyach EH, Boubaker H, Bouizgarne B, Ait Ben Aoumar A (2010) Screening for fluorescent pseudomonades, isolated from the rhizosphere of tomato, for antagonistic activity toward Clavibacter michiganensis subsp. michiganensis. World J Microbiol Biotechnol 26:1059–1065CrossRefGoogle Scholar
  8. Andersen JB, Koch B, Nielsen TH, Sørensen D, Hansen M, Nybroe O, Christophersen C, Sørensen J, Molin S, Givskov M (2003) Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149:1147–1156CrossRefGoogle Scholar
  9. Anderson AJ, Habibzadegah-Tari P, Tepper CS (1988) Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida. Appl Environ Microbiol 54:375–380PubMedGoogle Scholar
  10. Antoun H, Kloepper JW (2001) Plant growth-promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480CrossRefGoogle Scholar
  11. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620CrossRefGoogle Scholar
  12. Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205CrossRefGoogle Scholar
  13. Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtillis RB14. Appl Environ Microbiol 62:4081–4085PubMedGoogle Scholar
  14. Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117:130–135CrossRefGoogle Scholar
  15. Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019PubMedGoogle Scholar
  16. Audenaert K, Pattery T, Comelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156PubMedCrossRefGoogle Scholar
  17. Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781CrossRefGoogle Scholar
  18. Baker R (1991) Induction of rhizosphere competence in the biocontrol fungus Trichoderma. In: Keister DL, Cregan PB (eds) Rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 221–228CrossRefGoogle Scholar
  19. Bakker PAHM (1989) Siderophore-mediated plant growth promotion and colonization of roots by strains of Pseudomonas spp. Ph.D thesis, Willie Commelin Scholten Phytopathological Laboratory, Department of Plant Pathology, State University Utrecht, Javalaan 20, 3742 Baarn, The Netherlands, pp 100Google Scholar
  20. Bakker AW, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudmonas fluorescens. Phytopathology 85:1021–1027CrossRefGoogle Scholar
  21. Bakker PAHM, Weisbeek PJ, Schippers B (1988) Siderophore production by plant growth promoting Pseudomonas spp. J Plant Nutr 11:925–933CrossRefGoogle Scholar
  22. Bakker PAHM, Raaijmakers JM, Bloemberg GV, Hofte M, Lemanceau P, Cooke M (2007) New perspectives and approaches in plant growth-promoting rhizobacteria research. Eur J Plant Pathol 119:241–242CrossRefGoogle Scholar
  23. Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2003) Characterisation of systemic resistance in sugar beet elicited by a nonpathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298CrossRefGoogle Scholar
  24. Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241CrossRefGoogle Scholar
  25. Barnett SJ, Singleton I, Ryder M (1999) Spatial variation in population of Pseudomonas corrugata 2140 and Pseudomonads on take-all diseased and healthy root systems of wheat. Soil Biol Biochem 31:633–636CrossRefGoogle Scholar
  26. Barrows-Broaddus J, Kerr TK (1981) Inhibition of Fusarium moniliforme var. subglutinans, the casual agent of pitch canker, by the soil bacterium Arthrobacter sp. Can J Microbiol 27:20–27PubMedCrossRefGoogle Scholar
  27. Becker JO, Hedges RW, Messens E (1985) Inhibitory effect of pseudobactin on the uptake of iron by higher plants. Appl Environ Microbiol 49:1090–1093PubMedGoogle Scholar
  28. Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800PubMedCrossRefGoogle Scholar
  29. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26PubMedCrossRefGoogle Scholar
  30. Bermpohl A, Dreier J, Bahro R, Eichenlaub R (1996) Exopolysaccharides in the pathogenic interaction of Clavibacter michiganensis subsp. michiganensis with tomato plants. Microbiol Res 151:391–399CrossRefGoogle Scholar
  31. Bloemberg GV (2007) Microscopic analysis of plant -bacterium interactions using auto fluorescent proteins. Eur J Plant Pathol 119:301–309CrossRefGoogle Scholar
  32. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:43–350CrossRefGoogle Scholar
  33. Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176PubMedCrossRefGoogle Scholar
  34. Bolwerk A, Lugtenberg BJJ (2005) Visualization of interactions of microbial biocontrol agents and phytopathogenic fungus Fusarium oxysporum f. sp. radicis lycopersici on tomato roots. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Berlin, pp 217–231Google Scholar
  35. Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:983–993CrossRefGoogle Scholar
  36. Bouizgarne B, El Hadrami I, Ouhdouch Y (2006) Novel production of isochainin by a strain of Streptomyces sp. isolated from rhizosphere soil of the indigenous Moroccan plant Argania spinosa L. World J Microbiol Biotechnol 22:423–429CrossRefGoogle Scholar
  37. Brisbane PG, Rovira AD (1988) Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads. Plant Pathol 37:104–111CrossRefGoogle Scholar
  38. Broadbent P, Baker KF, Waterworth Y (1971) Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils. Aust J Biol Sci 24:925–944PubMedGoogle Scholar
  39. Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch C 52:713–720PubMedGoogle Scholar
  40. Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. triciti by Pseudomonas fluorescens strain 2–79. Phytopathology 81:954–959CrossRefGoogle Scholar
  41. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMedCrossRefGoogle Scholar
  42. Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383CrossRefGoogle Scholar
  43. Buyer JS, Sikora LJ, Chaney RL (1989) A new growth medium for the study of siderophore-mediated interactions. Biol Fertil Soils 8:97–101CrossRefGoogle Scholar
  44. Chabot R, Antoun H, Cescas M (1993) Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. Can J Microbiol 39:941–947CrossRefGoogle Scholar
  45. Chebotar VK, Asis CA Jr, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432Google Scholar
  46. Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726PubMedGoogle Scholar
  47. Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212CrossRefGoogle Scholar
  48. Chernin LS, Fuente LDL, Sobolov V, Haran S, Vorgias CE, Oppenheim AB, Chet I (1997) Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol 63:834–839PubMedGoogle Scholar
  49. Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85–92CrossRefGoogle Scholar
  50. Chin-A-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79–86CrossRefGoogle Scholar
  51. Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:1069–1077CrossRefGoogle Scholar
  52. Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato root rot. Mol Plant Microbe Interact 12:1340–1345CrossRefGoogle Scholar
  53. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523CrossRefGoogle Scholar
  54. Constantinescu F (2001) Extraction and identification of antifungal metabolites produced by some B. subtilis strains. Analele Institutului de Cercetari Pentru Cereale Protectia Plantelor 31:17–23Google Scholar
  55. Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905PubMedGoogle Scholar
  56. Crawford DL, Kowalski M, Roberts MA, Merrel G, Deobald LA (2005) Discovery, development an commercialization of a microbial antifungal biocontrol agent Streptomyces lydicus WYEC 108: history of a decade long endeavour. Soc Ind Microbiol News 55:88–95Google Scholar
  57. Da Mota FF, Gomes EA, Seldin L (2008) Auxin production and detection of the gene coding for the auxin efflux carrier (AEC) protein in Paenibacillus polymyxa. J Microbiol 56:275–264Google Scholar
  58. de Boer M, Bom P, Kindt F, Keurentjes JJB, van der Sluis I, van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632PubMedCrossRefGoogle Scholar
  59. de Mot R, Proost P, van Damme J, Vander Leyden J (1992) Homology of the root adhesin of Pseudomonas fluorescens OE 28.3 with porin F of P. aeruginosa and P. syringae. Mol Gen Genet 231:489–493PubMedCrossRefGoogle Scholar
  60. de Souza JTA, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975PubMedCrossRefGoogle Scholar
  61. de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric Streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54:807–816CrossRefGoogle Scholar
  62. De Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996–2012PubMedCrossRefGoogle Scholar
  63. De Weger LA, Van Boxtel R, Van Der Burg B, Gruters RA, Geels FP, Schippers B, Lugtenberg B (1986) Siderophores and outer membrane proteins of antagonistic, plant- growth-stimulating, rootcolonizing Pseudomonas spp. J Bacteriol 165:585–594PubMedGoogle Scholar
  64. de Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ (1987) Flagella of a plant growth stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773PubMedGoogle Scholar
  65. de Weger LA, Bakker PAHM, Schippers B, van Loosdrecht MCM, Lugtenberg BJJ (1989) Pseudomonas spp. with mutational changes in the Oantigenic side chain of their lipopolysaccharide are affected in their ability to colonize potato roots. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin, pp 197–202Google Scholar
  66. de Weger LA, Kuipe I, van der Bij AJ, Lugtenberg BJJ (1997) Use of a lux-based procedure to rapidly visualize root colonization by Pseudomonas fluorescens in the wheat rhizosphere. Antonie Leeuwenhoek 72:365–372PubMedCrossRefGoogle Scholar
  67. Deepa CK, Dastager SG, Pandey A (2010) Plant growth-promoting activity in newly isolated Bacillus thioparus (NII-0902) from Western ghat forest, India. World J Microbiol Biotechnol 26:2277–2283CrossRefGoogle Scholar
  68. Défago G, Haas D, Berling CH, Burger U, Keel C, Voisard C, Wirthner P, Wuthrich B (1990) Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 93–108Google Scholar
  69. Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771PubMedCrossRefGoogle Scholar
  70. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  71. Duijff BJ, Meijer JW, Bakker PAHM, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth Plant Pathol 99:277–289CrossRefGoogle Scholar
  72. Duijff BJ, Bakker PAHM, Schippers B (1994a) Suppression of Fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Technol 4:279–288CrossRefGoogle Scholar
  73. Duijff BJ, Bakker PAHM, Schippers B (1994b) Ferric pseudobactin 358 as an iron source for carnation. J Plant Nutr 17:2069–2078CrossRefGoogle Scholar
  74. Duijff BJ, De Kogel WJ, Bakker PAHM, Schippers B (1994c) Influence of pseudobactin 358 on the iron nutrition of barley. Soil Biol Biochem 26:1681–1994CrossRefGoogle Scholar
  75. Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer-membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens WCS417r. New Phytol 135:325–334CrossRefGoogle Scholar
  76. Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3391CrossRefGoogle Scholar
  77. Dunne C, Moënne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated damping-off of sugar beet. Pathology 47:299–307Google Scholar
  78. El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonism Streptomyces spp. Plant Soil 149:185–195CrossRefGoogle Scholar
  79. Elad Y, Baker R (1985a) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp by Pseudomonas spp. Phythopathology 75:1053–1059CrossRefGoogle Scholar
  80. Elad Y, Baker R (1985b) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047–1052CrossRefGoogle Scholar
  81. El-Banna N, Winkelmann G (1988) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–78CrossRefGoogle Scholar
  82. El-Tarabily KA (2006) Rhizosphere-competent isolates of Streptomycete and non-streptomycete Actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84:211–222CrossRefGoogle Scholar
  83. El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1- aminocyclopropane-1- carboxylic acid deaminase-producing streptomycete Actinomycetes. Plant Soil 308:161–174CrossRefGoogle Scholar
  84. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520CrossRefGoogle Scholar
  85. El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GESJ (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and Actinomycetes. Plant Pathol 49:573–583CrossRefGoogle Scholar
  86. El-Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere- competent isolate of Micromonospora endolithica. Appl Soil Ecol 39:161–171CrossRefGoogle Scholar
  87. Fließbach A, Winkler M, Lutz MP, Oberholzer H-R, Mäder P (2009) Soil Amendment with Pseudomonas fluorescens CHA0: Lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623PubMedCrossRefGoogle Scholar
  88. Foster RC, Rovira AD (1978) The ultrastructure of the rhizosphere of Trifolium subterraneum L. In: Loutit MW, Miles JAR (eds) Microbial ecology. Springer, Berlin, pp 278–290CrossRefGoogle Scholar
  89. Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36:524–531CrossRefGoogle Scholar
  90. Frankowski Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426CrossRefGoogle Scholar
  91. Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a ß-1, 3 glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221CrossRefGoogle Scholar
  92. Gamalero E, Lingua G, Caprì FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87PubMedCrossRefGoogle Scholar
  93. Gamalero E, Lingua G, Tombolini R, Avidano L, Pivato B, Berta G (2005) Colonization of tomato root seedling by Pseudomonas fluorescens 92 rkG5: spatio-temporal dynamics, localization, organization, viability, and culturability. Microbiol Ecol 50:289–297CrossRefGoogle Scholar
  94. Geels FP, Schippers B (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Phytopathol J 108:193–206CrossRefGoogle Scholar
  95. Georgakopoulos DG, Hendson M, Panopoulos NJ, Schroth MN (1994) Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Appl Environ Microbiol 60:2931–2938PubMedGoogle Scholar
  96. Gill PR, Warren GJ (1988) An iron-antagonized fungistatic agent that is not required for iron assimilation from a fluorescent rhizosphere pseudomonad. J Bacteriol 170:163–170PubMedGoogle Scholar
  97. Glandorf DCM, van der Sluis I, Anderson AJ, Bakker PAHM, Schippers B (1994) Agglutination, adherence, and root colonization by fluorescent pseudomonads. Appl Environ Microbiol 60:1726–1733PubMedGoogle Scholar
  98. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  99. Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001) Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: a community approach for the improved selection of rhizosphere competent bacteria. Plant Soil 232:181–193CrossRefGoogle Scholar
  100. Gómez-Gómez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284PubMedCrossRefGoogle Scholar
  101. Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  102. Gupta A, Meyer JM, Goel R (2002) Development of heavy metal-resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Curr Microbiol 45:323–327PubMedCrossRefGoogle Scholar
  103. Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate rootsystem architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83CrossRefGoogle Scholar
  104. Guzzo SD, Martins EMF (1996) Local and systemic induction of β-1, 3-glucanase and chitinase in coffee leaves protected against Hemileia vastatrix by Bacillus thuringiensis. J Phytopathol 144:449–454CrossRefGoogle Scholar
  105. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedCrossRefGoogle Scholar
  106. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153PubMedCrossRefGoogle Scholar
  107. Hamby MK (2001) M.S. thesis. University of Idaho, MoscowGoogle Scholar
  108. Hamby MK, Crawford DL (2000) The enhancement of plant growth by selected Streptomyces species. In: 100th General meeting of American Society for Microbiology, Los Angeles, CA. Abstract 567Google Scholar
  109. Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008a) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19CrossRefGoogle Scholar
  110. Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Rock phosphate-solubilizing Actinomycetes: screening for growth promotioing activities. World J Microbial Biotechnol 24:2565–2575CrossRefGoogle Scholar
  111. Hasegawa S, Meguro A, Shimizu M, Nishimura T, Toyoda K, Shiraishi T, Kunoh H (2008) Two bioassay methods to evaluate root-accelerating activity of Streptomyces sp. MBR52 metabolites. Actinomycetologica 22:42–45CrossRefGoogle Scholar
  112. He H, Silo-Suh LA, Handelsman J, Clardy J (1994) Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett 35:2499–2502CrossRefGoogle Scholar
  113. Hiltner L (1904) Uber neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriolgie und unter besonderes Berucksichtigung der Grundugungen und Brauche. Arb Dtsch Landwirt Ges Berl 98:59–78Google Scholar
  114. Hohnadel D, Meyer JM (1988) Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J Bacteriol 170:4865–4873PubMedGoogle Scholar
  115. Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482CrossRefGoogle Scholar
  116. Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715CrossRefGoogle Scholar
  117. Howie WJ, Cook RJ, Weller DM (1987) Effects of soil matrix potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77:286–292CrossRefGoogle Scholar
  118. Idris EES, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109Google Scholar
  119. Idris EES, Bochow H, Ross H, Borriss R (2004) Use of Bacillus subtilis as biocontrol agent. Phytohormone like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J Plant Dis Prot 111:583–597Google Scholar
  120. Inbar J, Chet I (1991) Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-bome plant pathogens by this bacterium. Soil Biol Biochem 23:973–978CrossRefGoogle Scholar
  121. Isono K, Nagatsu J, Kawashima Y, Suzuki S (1965) Studies on polyoxins, antifungal antibiotics. Part I. Isolation and characterization of polyoxins A and B. Agric Biol Chem 29:848–854CrossRefGoogle Scholar
  122. Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2, 4-D contaminated soil. Plant Soil 189:139–144CrossRefGoogle Scholar
  123. Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275PubMedCrossRefGoogle Scholar
  124. James WC (1981) Estimated losses of crops from plant pathogens. In: Pimentel D (ed) Handbook of pest management in agriculture, vol 1. CRC, Boca Raton, FL, pp 79–94Google Scholar
  125. Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87:1390–1394CrossRefGoogle Scholar
  126. Jeun YC, Park KS, Kim H (2001) Different mechanisms of induced systemic resistance and systemic acquired resistance against Colletotrichum orbiculare on the leaves of cucumber plants. Mycobiology 29:19–26Google Scholar
  127. Jung WJ, An KN, Jin YL, Park RD, Lim KT, Kim KY, Kim TH (2003) Biological control of damping off caused by Rhizoctonia solani using chitinase producing Paenibacillus illinoisensis KJA-424. Soil Biol Biochem 35:1261–1264CrossRefGoogle Scholar
  128. Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331CrossRefGoogle Scholar
  129. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13CrossRefGoogle Scholar
  130. Kennedy AC (2005) Rhizosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology, 2nd edn. Pearson, Prentice Hall, Upper Saddle River, NJ, pp 242–262Google Scholar
  131. Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655CrossRefGoogle Scholar
  132. Kim BS, Moon SS, Hwang BK (1999) Isolation, identification and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77:850–858Google Scholar
  133. Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1165PubMedCrossRefGoogle Scholar
  134. Kloepper JW (2003) A review of mechanisms for plant growth promotion by PGPR. In: Reddy MS, Anandaraj M, Eapen SJ, Sarma YR, Kloepper JW (eds) 6th International PGPR workshop (Abstracts and short papers), 5–10 Oct 2003, Indian Institute of Spices Research, Calicut, India, pp 81–92Google Scholar
  135. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Végétale et de Phytobactériologie, INRA, Angers, France, pp 879–882Google Scholar
  136. Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320CrossRefGoogle Scholar
  137. Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:835–836CrossRefGoogle Scholar
  138. Kloepper JW, Lifshitz R, Zablotwicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trend Biotechnol 7:39–43CrossRefGoogle Scholar
  139. Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266PubMedCrossRefGoogle Scholar
  140. Kluepfel DA, Kline EL, Skipper HD, Hughes TA, Gooden DT, Drahos DJ, Barry GF, Hemming BC, Brandt EJ (1991) The release and tracking of genetically engineered bacteria in the environment. Phytopathology 81:348–352Google Scholar
  141. Koch B, Nielsen TH, Sorensen D, Andersen JB, Christophersen C, Molin S, Givskov M, Sorensen J, Nybroe O (2002) Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl Environ Microbiol 68:4509–4516PubMedCrossRefGoogle Scholar
  142. Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266CrossRefGoogle Scholar
  143. Kortemaa H, Rita H, Haahtela K, Smolander A (1994) Root colonization ability of antagonistic Streptomyces griseoviridis. Plant Soil 163:77–83Google Scholar
  144. Koths JS, Gunner HR (1967) Establishment of a rhizosphere microflora on carnation as a means of plant protection in steamed greenhouse soils. Am Soc Hortic Sci 91:617–626Google Scholar
  145. Kragelund L, Hosbond C, Nybroe O (1997) Distribution of metabolic activity and phosphate starvation response of lux tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl Environ Microbiol 63:4920–4928PubMedGoogle Scholar
  146. Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854PubMedGoogle Scholar
  147. Krishnamurthy K, Gnanamanickam SS (1998) Induction of systemic resistance and salicylic acid accumulation in Oryza sativa L. in the biological suppression of rice blast cause by treatments with Pseudomonas spp. World J Microbiol Biotechnol 14:935–937CrossRefGoogle Scholar
  148. Kumar BSD (1999) Fusarial wilt suppression and crop improvement through two rhizobacterial strains in chick pea growing in soils infested with Fusarium oxysporum f. sp. ciceris. Biol Fertil Soils 29:87–91CrossRefGoogle Scholar
  149. Lagopodi AL, Ram AF, Lamers GEM, Punt P, van den Hondel CAM, Lugtenberg B, Bloemberg GV (2002) Confocal laser scanning microscopical analysis of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis lycopersici using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172–179PubMedCrossRefGoogle Scholar
  150. Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden-Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens to colonize the roots of pea. Appl Environ Microbiol 68:3226–3237PubMedCrossRefGoogle Scholar
  151. Landa BB, Mavrodi DM, Thomashow LS, Weller DM (2003) Interactions between strains of 2, 4- diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology 93:982–994PubMedCrossRefGoogle Scholar
  152. Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. HortScience 32:188–192Google Scholar
  153. Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334CrossRefGoogle Scholar
  154. Leeman M, van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027CrossRefGoogle Scholar
  155. Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664CrossRefGoogle Scholar
  156. Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PHAM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155CrossRefGoogle Scholar
  157. Lemanceau P (1992) Effets bénéfiques de rhizobactéries sur les plantes: exemple des Pseudomonas spp. Fluorescents. Agron 12:413–437CrossRefGoogle Scholar
  158. Lemanceau P, Alabouvette C (1993) Suppression of fusarium wilts by fluorescent pseudomonas: mechanisms and applications. Biocontrol Sci Technol 3:219–234CrossRefGoogle Scholar
  159. Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras JM, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissimum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012PubMedGoogle Scholar
  160. Lemanceau P, Maurhofer M, Défago G (2006) Contribution of studies on suppressive soils to the identification of bacterial biocontrol agents and to the knowledge of their modes of action. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, New York, pp 231–267CrossRefGoogle Scholar
  161. Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209CrossRefGoogle Scholar
  162. Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13CrossRefGoogle Scholar
  163. Loper JE, Lindow SE (1991) A biological sensor for available iron in the rhizosphere. In: Keel C, Koller B, Défago G (eds) Plant growth-promoting rhizobacteria: progress and prospects. IOBC/WPRS Bulletin XIV, pp 177–181Google Scholar
  164. Loper JE, Schroth MN (1986) Importance of sidérophores in microbial interactions in the rhizosphere. In: Swinburne TR (ed) Iron siderophores and plant disease. Plenum, New York, pp 85–98CrossRefGoogle Scholar
  165. Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 1–10Google Scholar
  166. Mahadevan B, Crawford DL (1997) Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb Technol 20:489–493CrossRefGoogle Scholar
  167. Mahaffee WF, Bauske EM, van Vuurde JWL, van der Wolf M, van den Brink M, Kloepper JW (1997) Comparative analysis of antibiotic resistance, immunofluorescent colony staining, and a transgenic marker (bioluminescence) for monitoring the environmental fate of a rhizobacterium. Appl Environ Microbiol 63:1617–1622PubMedGoogle Scholar
  168. Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208CrossRefGoogle Scholar
  169. Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146CrossRefGoogle Scholar
  170. Maurhofer M, Keel C, Haas D, Défago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathol 44:40–50CrossRefGoogle Scholar
  171. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  172. McSpadden Gardener BB (2004) Ecology of Bacillus and PaeniBacillus spp. in agricultural systems. Phytopathology 94:1252–1258PubMedCrossRefGoogle Scholar
  173. McSpadden-Gardener BB, Mavrodi DV, Thomashow LS, Weller DM (2001) A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2, 4-diacetylphloroglucinol-producing bacteria. Phytopathology 91:44–54PubMedCrossRefGoogle Scholar
  174. Merriman PR, Price RD, Kollmorgen JF, Piggott T, Ridge EH (1974) Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Aust J Agric Res 25:219–226CrossRefGoogle Scholar
  175. Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by Actinomycetes of different genera. Microbiology 75:226–230CrossRefGoogle Scholar
  176. Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185PubMedCrossRefGoogle Scholar
  177. Miller JJ, Liljeroth E, Henken G, van Veen JA (1989) Fluctuations in the fluorescent pseudomonad and Actinomycetes populations of rhizosphere and rhizoplane during the growth of spring wheat. Can J Microbiol 36:254–258CrossRefGoogle Scholar
  178. Miller JJ, Liljeroth E, Willemsen-de Klein MJEIM, van Veen JA (1990) The dynamics of Actinomycetes and fluorescent pseudomonads in wheat rhizoplane and rhizosphere. Symbiosis 9:389–391Google Scholar
  179. Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Enviorn Microbiol 62:3061–3065Google Scholar
  180. Moyne AL, Shalby R, Cleveland TE, Tuzun S (2001) Bacillomycin, D, an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629PubMedCrossRefGoogle Scholar
  181. Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine mediated iron transport in Streptomyces pilosus. J Bacteriol 160:304–312PubMedGoogle Scholar
  182. Muller G, Matzanke BF, Raymond KN (1984) Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio- rhodotorulic acid. J Bacteriol 160:313–318PubMedGoogle Scholar
  183. Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polstan JE, Kloepper JW (2000) Plant growth-promoting rhizobacteria mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784CrossRefGoogle Scholar
  184. Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423PubMedCrossRefGoogle Scholar
  185. Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881PubMedCrossRefGoogle Scholar
  186. Olson EH (1968) Actinomycetes isolation agar (Difco Supplementary Literature). Difco Laboratory, DetroitGoogle Scholar
  187. Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76CrossRefGoogle Scholar
  188. Ongena M, Daayf F, Jacques P, Thonart P, Banhamou N, Paulitz TC, Belanger RR (2000) Systemic induction of phytoalexins in cucumber in response to treatment with fluorescent Pseudomonads. Plant Pathol 49:523–530CrossRefGoogle Scholar
  189. Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707PubMedCrossRefGoogle Scholar
  190. Park KS, Ahn IP, Kim H (2001) Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology 29:48–53Google Scholar
  191. Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–34CrossRefGoogle Scholar
  192. Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288PubMedCrossRefGoogle Scholar
  193. Powell JF, Vargas JM, Nair MG, Detweiler AR, Chandra A (2000) Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis 84:19–24CrossRefGoogle Scholar
  194. Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4- Diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152CrossRefGoogle Scholar
  195. Raaijmakers JM, Leeman M, van Oorschot MMP, van der Sluis I, Schippers B, Bakker PAHM (1995) Dose–response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081CrossRefGoogle Scholar
  196. Raaijmakers J, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887PubMedGoogle Scholar
  197. Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2, 4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475PubMedCrossRefGoogle Scholar
  198. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton van Leeuwenhook 81:537–547CrossRefGoogle Scholar
  199. Ran L, Xiang M, Zhou B, Bakker PAHM (2005) Siderophores are the main determinants of fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla. Acta Phytopathol Sinica 35:6–12Google Scholar
  200. Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against Cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80:891–894CrossRefGoogle Scholar
  201. Rothrock CS, Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can J Microbiol 30:1440–1447CrossRefGoogle Scholar
  202. Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932PubMedCrossRefGoogle Scholar
  203. Ryu C-M, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292CrossRefGoogle Scholar
  204. Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573CrossRefGoogle Scholar
  205. Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358CrossRefGoogle Scholar
  206. Schmidt EL (1979) Initiation of plant root microbe interactions. Annu Rev Microbiol 33:355–376PubMedCrossRefGoogle Scholar
  207. Schmidt CS, Lorenz D, Wolf GA (2001) Biological control of the grapevine dieback fungus Eutypa lata I: screening of bacterial antagonists. J Phytopathol 149:427–435CrossRefGoogle Scholar
  208. Schobe RBM, vanVuurde JWL (1997) Detection and enumeration of Erwinia carotovora subsp. atroseptica using spiral plating and immunofluorescence colony staining. Can J Microbiol 43:847–853CrossRefGoogle Scholar
  209. Schottel JL, Shimizu K, Kinkel LL (2001) Relationships of in vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic Streptomyces spp. Biol Control 20:102–112CrossRefGoogle Scholar
  210. Shafikova TN, Romanenko AS, Borovskii GB (2003) Plasma membrane receptors for exopolysaccharides of the ring rot causal agent in potato cells. Russ J Plant Physiol 50:220–223CrossRefGoogle Scholar
  211. Sharifi-Tehrani A, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (1998) Biocontrol of soil-borne fungal plant diseases by 2,4- diacetylphloroglucinolproducing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur J Plant Pathol 104:631–643CrossRefGoogle Scholar
  212. Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713CrossRefGoogle Scholar
  213. Silo-suh LA, Stab VE, Raffel SR, Handelsman J (1998) Target range of Zwittermicin A, an Aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11PubMedCrossRefGoogle Scholar
  214. Simon E, Ridge H (1974) The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudomonads. J Appl Bacteriol 37:459–460PubMedCrossRefGoogle Scholar
  215. Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99PubMedCrossRefGoogle Scholar
  216. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant dependent enrichment and seasonal shifts revealed. Appl Enviorn Microbiol 67:4742–4751CrossRefGoogle Scholar
  217. Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:473–491PubMedCrossRefGoogle Scholar
  218. Sneh B (1981) Use of rhizosphere chitinolytic bacteria for biological control of Fusarium oxysporum f. sp. dianthi in carnation. Phytopathol Z 100:251–256CrossRefGoogle Scholar
  219. Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium-suppressive soil. Phytopathology 74:1115–1124CrossRefGoogle Scholar
  220. Söderberg KH, Bååt E (1998) Bacterial activity along a young barley root measured by the thymidine and leucine incorporating techniques. Soil Biol Biochem 30:1259–1268CrossRefGoogle Scholar
  221. Somers E, Vanderleijden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240PubMedCrossRefGoogle Scholar
  222. Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Akutsu K, Sawada H (2007) Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Biocontrol Sci 12:1–6PubMedCrossRefGoogle Scholar
  223. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  224. Stabb E, Jacobson LM, Handelsman J (1994) Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412PubMedGoogle Scholar
  225. Suslow TV, Schroth MN (1982) Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199–206CrossRefGoogle Scholar
  226. Tazawa J, Watanabe K, Yoshida H, Sato M, Homma Y (2000) Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics, pyrrolnitrin and phloroglucinol. Soil Microorg 54:61–67Google Scholar
  227. Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508PubMedGoogle Scholar
  228. Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Enviorn Microbiol 56:908–912Google Scholar
  229. Thomashow LS, Bonsal RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 493–499Google Scholar
  230. Thrane C, Nielsen TH, Nielsen MN, Olsson S, Sorensen J (2000) Viscosinamide producing Pseudomonas fluorescens DR54 exerts biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146PubMedCrossRefGoogle Scholar
  231. Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959PubMedCrossRefGoogle Scholar
  232. Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852CrossRefGoogle Scholar
  233. Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300PubMedCrossRefGoogle Scholar
  234. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant- microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171PubMedCrossRefGoogle Scholar
  235. Tombolini R, Unge A, Davey ME, de Bruijn F, Jansson K (1997) Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol 22:17–28CrossRefGoogle Scholar
  236. Troxler J, Berling C-H, Moënne-Loccoz Y, Keel C, Défago G (1997) Interactions between the biocontrol agent Pseudomonas fluorescens CHA0 and Thielaviopsis basicola in tobacco roots observed by immunofluorescence microscopy. Plant Pathol 46:62–71CrossRefGoogle Scholar
  237. Umezawa H, Okami T, Hashimoto T, Suhara Y, Hamada M, Takeuchi T (1965) A new antibiotic, kasugamycin. J Antibiot Ser A 18:101–103Google Scholar
  238. Utkhede RS, Rahe JE (1980) Biological ontrol of onion white rot. Soil Biol Biochem 12:101–104CrossRefGoogle Scholar
  239. Valois D, Fayad K, Barasubiye T, Garon T, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic Actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635PubMedGoogle Scholar
  240. Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254CrossRefGoogle Scholar
  241. Van Loon LC, Bakker PAHM (2003) Signalling in rhizobacteria-plant interactions. In: De Kroon H, Visser EJW (eds) Root ecology (Ecological studies), vol 168. Springer, Berlin, pp 297–330Google Scholar
  242. Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205Google Scholar
  243. Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139CrossRefGoogle Scholar
  244. Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 81:728–734CrossRefGoogle Scholar
  245. Van Wees SCM, Pieters CMJ, Trisjssenaar A, Van’t Westende YAM, Hartog F, van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724PubMedCrossRefGoogle Scholar
  246. Velazhahan R, Samiyappan R, Vidhyasekaran P (1999) Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzymes. Z Pflanz Pflanzen 106:244–250Google Scholar
  247. Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52:56–65PubMedCrossRefGoogle Scholar
  248. Vesper SJ (1987) Production of pili (fimbriae) by Pseudomonas fluorescens and a correlation with attachment to corn roots. Appl Environ Microbiol 53:1397–1405PubMedGoogle Scholar
  249. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  250. Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedGoogle Scholar
  251. Von Der Weid I, Duarte G, Van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153PubMedCrossRefGoogle Scholar
  252. Von Der Weid I, Artursson V, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP tagged Paenibacillus brasilensis PB177. World J Microbiol Biotechnol 2(1):1591–1597CrossRefGoogle Scholar
  253. Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407CrossRefGoogle Scholar
  254. Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469CrossRefGoogle Scholar
  255. Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA (1983) The structure of pyoverdine, the siderophores of Pseudomonas aeruginosa. Tetrahedron Lett 24:4877–4880CrossRefGoogle Scholar
  256. Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128PubMedGoogle Scholar
  257. Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000) Induction of resistance in tomato against Cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biocontrol 45:127–137CrossRefGoogle Scholar
  258. Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50CrossRefGoogle Scholar
  259. Zhang Y, Fernando WGD (2004) Zwittermicin A detection in Bacillus spp. controlling Sclerotinia sclerotiorum on canola. Phytopathol 94:S116Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de biotechnologies et valorisation des resources naturelles (LBVRN)AgadirMorocco

Personalised recommendations