Advertisement

Multi-objective Optimisation, Sensitivity and Robustness Analysis in FBA Modelling

  • Jole Costanza
  • Giovanni Carapezza
  • Claudio Angione
  • Pietro Liò
  • Giuseppe Nicosia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7605)

Abstract

In this work, we propose a computational framework to design in silico robust bacteria able to overproduce multiple metabolites. To this end, we search the optimal genetic manipulations, in terms of knockout, which also guarantee the growth of the organism. We introduce a multi-objective optimisation algorithm, called Genetic Design through Multi-Objective (GDMO), and test it in several organisms to maximise the production of key intermediate metabolites such as succinate and acetate. We obtain a vast set of Pareto optimal solutions; each of them represents an organism strain. For each solution, we evaluate the fragility by calculating three robustness indexes and by exploring reactions and metabolite interactions. Finally, we perform the Sensitivity Analysis of the metabolic model, which finds the inputs with the highest influence on the outputs of the model. We show that our methodology provides effective vision of the achievable synthetic strain landscape and a powerful design pipeline.

Keywords

Cell Metabolism Biological CAD Sensitive and Fragile Pathways Genetic Design Multi-Objective optimisation Flux balance analysis Sensitivity and Robustness Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alper, H., Miyaoku, K., Stephanopoulos, G.: Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology 23(5), 612–616 (2005)CrossRefGoogle Scholar
  2. 2.
    Jarboe, L.R., Zhang, X., Wang, X., Moore, J.C., Shanmugam, K.T., Ingram, L.O.: Metabolic engineering for production of biorenewable fuels and chemicals: Contributions of synthetic biology. Journal of Biomedicine and Biotechnology (2010)Google Scholar
  3. 3.
    Atsumi, S., Wu, T.Y., Eckl, E.M., Hawkins, S.D., Buelter, T., Liao, J.C.: Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes.. Applied Microbiology and Biotechnology 85(3), 651–657 (2010)CrossRefGoogle Scholar
  4. 4.
    Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nature Biotechnology 28(3), 245–248 (2010)CrossRefGoogle Scholar
  5. 5.
    Patil, K.R., Rocha, I., Förster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6(1), 308 (2005)CrossRefGoogle Scholar
  6. 6.
    Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K.R., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9(1), 499 (2008)CrossRefGoogle Scholar
  7. 7.
    Lun, S.D., Rockwell, G., Guido, N.J., Baym, M., Kelner, J.A., Berger, B., Galagan, J.E., Church, G.M.: Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol. 5(296) (2009)Google Scholar
  8. 8.
    Burgard, A.P., Pharkya, P., Maranas, C.D.: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering 84(6), 647–657 (2003)CrossRefGoogle Scholar
  9. 9.
    Pharkya, P., Maranas, C.: An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metabolic Engineering 8(1), 1–13 (2006)CrossRefGoogle Scholar
  10. 10.
    Sun, J., Sayyar, B., Butler, J.E., Pharkya, P., Fahland, T.R., Famili, I., Schilling, C.H., Lovley, D.R., Mahadevan, R.: Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Systems Biology 3(1), 15+ (2009)Google Scholar
  11. 11.
    Feist, A.M., Scholten, J.C.M., Palsson, B.Ø., Brockman, F.J., Ideker, T.: Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2 (January 2006)Google Scholar
  12. 12.
    Charusanti, P., Chauhan, S., McAteer, K., Lerman, J.A., Hyduke, D.R., Motin, V.L., Ansong, C., Adkins, J.N., Palsoon, B.Ø.: An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis co92Google Scholar
  13. 13.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  14. 14.
    Sendin, J.O., Alonso, A., Banga, J.: Multi-objective optimization of biological networks for prediction of intracellular fluxes. In: Corchado, J., De Paz, J., Rocha, M., Rocha, M., Fernández Riverola, F. (eds.) 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 2008). AISC, vol. 49, pp. 197–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., Sauer, U.: Multidimensional optimality of microbial metabolism. Science 336(6081), 601–604 (2012)CrossRefGoogle Scholar
  16. 16.
    Xu, M., Bhat, S., Smith, R., Stephens, G., Sadhukhan, J.: Multi-objective optimisation of metabolic productivity and thermodynamic performance. Computers & Chemical Engineering 33(9), 1438–1450 (2009)CrossRefGoogle Scholar
  17. 17.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)CrossRefGoogle Scholar
  18. 18.
    Stracquadanio, G., Umeton, R., Papini, A., Liò, P., Nicosia, G.: Analysis and optimization of c3 photosynthetic carbon metabolism. In: Rigoutsos, I., Floudas, C.A. (eds.) Proceedings of 10th IEEE International Conference on Bioinformatics and Bioengineering (IEEE BIBE), Philadelphia, PA, USA, May 31-June 3, pp. 44–51. IEEE Computer Society (2010)Google Scholar
  19. 19.
    Umeton, R., Stracquadanio, G., Papini, A., Costanza, J., Lio, P., Nicosia, G.: Identification of sensitive enzymes in the photosynthetic carbon metabolism. Advances in Experimental Medicine and Biology 736, 441–459 (2012)CrossRefGoogle Scholar
  20. 20.
    Zhang, H.X., Goutsias, J.: A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems. BMC Bioinformatics 11(246) (2010)Google Scholar
  21. 21.
    Rodriguez-Fernandez, M., Banga, J.R.: Senssb: a software toolbox for the development and sensitivity analysis of systems biology models. Bioinformatics 26(13), 1675–1676 (2010)CrossRefGoogle Scholar
  22. 22.
    Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–175 (1991)CrossRefGoogle Scholar
  23. 23.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Physical Review Letters 85, 5468–5471 (2000)CrossRefGoogle Scholar
  24. 24.
    Shinar, G., Alon, U., Feinberg, M.: Sensitivity and robustness in chemical reaction networks. SIAM Journal of Applied Mathematics 69(4), 977–998 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hafner, M., Koeppl, H., Hasler, M., Wagner, A.: Glocal robustness analysis and model discrimination for circadian oscillators. PLoS Comput. Biol. 5(10) (2009)Google Scholar
  26. 26.
    Donaldson, R., Gilbert, D.: A Model Checking Approach to the Parameter Estimation of Biochemical Pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 269–287. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Lodhi, H., Gilbert, D.: Bootstrapping Parameter Estimation in Dynamic Systems. In: Elomaa, T., Hollmén, J., Mannila, H. (eds.) DS 2011. LNCS, vol. 6926, pp. 194–208. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Umeton, R., Stracquadanio, G., Sorathiya, A., Papini, A., Lio, P., Nicosia, G.: Design of robust metabolic pathways. In: Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pp. 747–752 (June 2011)Google Scholar
  29. 29.
    Nicosia, G., Rinaudo, S., Sciacca, E.: An evolutionary algorithm-based approach to robust analog circuit design using constrained multi-objective optimization. Knowledge-Based Systems 21(3), 175 (2008), The 27th SGAI International Conference on Artificial IntelligenceCrossRefGoogle Scholar
  30. 30.
    Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D., Broadbelt, L.J., Hatzimanikatis, V., Palsson, B.Ø.: A genome-scale metabolic reconstruction for escherichia coli k-12 mg1655 that accounts for 1260 orfs and thermodynamic information. Mol. Syst. Biol. 3(121), 291–301 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jole Costanza
    • 1
  • Giovanni Carapezza
    • 1
  • Claudio Angione
    • 2
  • Pietro Liò
    • 2
  • Giuseppe Nicosia
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaItaly
  2. 2.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations