Detection of Multi-clustered Genes and Community Structure for the Plant Pathogenic Fungus Fusarium graminearum

  • Laura Bennett
  • Artem Lysenko
  • Lazaros G. Papageorgiou
  • Martin Urban
  • Kim Hammond-Kosack
  • Chris Rawlings
  • Mansoor Saqi
  • Sophia Tsoka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7605)


Exploring the community structure of biological networks can reveal the roles of individual genes in the context of the entire biological system, so as to understand the underlying mechanism of interaction. In this study we explore the disjoint and overlapping community structure of an integrated network for a major fungal pathogen of many cereal crops, Fusarium graminearum. The network was generated by combining sequence, protein interaction and co-expression data. We examine the functional characteristics of communities, the connectivity and multi-functionality of genes and explore the contribution of known virulence genes in community structure. Disjoint community structure is detected using a greedy agglomerative method based on modularity optimisation. The disjoint partition is then converted to a set of overlapping communities, where genes are allowed to belong to more than one community, through the application of a mathematical programming method. We show that genes that lie at the intersection of communities tend to be highly connected and multifunctional. Overall, we consider the topological and functional properties of proteins in the context of the community structure and try to make a connection between virulence genes and features of community structure. Such studies may have the potential to identify functionally important nodes and help to gain a better understanding of phenotypic features of a system.


Community structure overlapping communities integrated networks multi-functional genes phytopathogenic fungi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network of yeast genes. Science 306(5701), 1555–1558 (2004)CrossRefGoogle Scholar
  2. 2.
    Lee, I., Marcotte, E.M.: Integrating functional genomics data. Methods in Molecular Biology 453, 267–278 (2008)CrossRefGoogle Scholar
  3. 3.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blondel, V., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008 (2008)CrossRefGoogle Scholar
  5. 5.
    Ruan, J., Zhang, W.: Identifying network communities with a high resolution. Phys. Rev. E, 77, 016104 (2008)CrossRefGoogle Scholar
  6. 6.
    Xu, G., Bennett, L., Papageorgiou, L.G., Tsoka, S.: Module detection in complex networks using integer optimisation. Algorithms for Molecular Biology 5, 36 (2010)CrossRefGoogle Scholar
  7. 7.
    Xu, G., Tsoka, S., Papageorgiou, L.G.: Finding community structures in complex networks using mixed integer optimisation. Eur. Phys. J. B 60, 231–239 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bennett, L., Liu, S., Papageorgiou, L.G., Tsoka, S.: Detection of disjoint and overlapping modules in weighted complex networks. Advances in Complex Systems, 15, 11500 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kuhner, S., van Noort, V., Betts, M.J., Leo-Macias, A., Batisse, C., Rode, M., Yamada, T., Maier, T., Bader, S., Beltran-Alvarez, P., Castaño-Diez, D., Chen, W.-H., Devos, D., Güell, M., Norambuena, T., Racke, I., Rybin, V., Schmidt, A., Yus, E., Aebersold, R., Herrmann, R., Böttcher, B., Frangakis, A.S., Russell, R.B., Serrano, L., Bork, P., Gavin, A.-C.: Proteome Organization in a Genome-Reduced Bacterium. Science 326(5957), 1235–1240 (2009)CrossRefGoogle Scholar
  10. 10.
    Gavin, A.-C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.-A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)CrossRefGoogle Scholar
  11. 11.
    Salathé, M., Jones, J.H.: Dynamics and Control of Diseases in Networks with Community Structure. PLoS Computational Biology 6(4), e1000736 (2010)Google Scholar
  12. 12.
    Zhang, S., Wang, R.-S., Zhang, X.-S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its Applications 374(1), 483–490 (2007)CrossRefGoogle Scholar
  13. 13.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  14. 14.
    Ma, X., Gao, L., Yong, X.: Eigenspaces of networks reveal the overlapping and hierarchical community structure more precisely. J. Stat. Mech., P08012 (2010)Google Scholar
  15. 15.
    Zhang, S., Wang, R.S., Zhang, X.S.: Uncovering fuzzy community structure in complex networks. Physical Review E 76(046103) (2007)Google Scholar
  16. 16.
    Zarei, M., Izadi, D., Samani, K.A.: Detecting overlapping community structure of networks based on vertex-vertex correlations. Journal of Statistical Mechanics (P11013) (2009)Google Scholar
  17. 17.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11(033015) (2009)Google Scholar
  18. 18.
    Wang, X., Jiao, L., Wu, J.: Adjusting from disjoint to overlapping community detection of complex networks. Physica A 388, 5045–5056 (2009)CrossRefGoogle Scholar
  19. 19.
    Becker, E., Robisson, B., Chapple, C.E., Guénoche, A., Brun, C.: Multifunctional Proteins Revealed by Overlapping Clustering in Protein Interaction Network. Bioinformatics 28(1), 84–90 (2012)CrossRefGoogle Scholar
  20. 20.
    Guimera, R., Amaral, L.A.N.: Functional Cartography of Complex Metabolic Networks. Nature 433, 895–900 (2005)CrossRefGoogle Scholar
  21. 21.
    Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25(15), 1891–1897 (2009)CrossRefGoogle Scholar
  22. 22.
    Cuomo, C.A., Guldener, U., Xu, J.R., Trail, F., Turgeon, B.G., Di Pietro, A., Walton, J.D., Ma, L.J., Baker, S.E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo, S., Chang, Y.L., Decaprio, D., Gale, L.R., Gnerre, S., Goswami, R.S., Hammond-Kosack, K., Harris, L.J., Hilburn, K., Kennell, J.C., Kroken, S., Magnuson, J.K., Mannhaupt, G., Mauceli, E., Mewes, H.W., Mitterbauer, R., Muehlbauer, G., Munsterkotter, M., Nelson, D., O’Donnell, K., Ouellet, T., Qi, W., Quesneville, H., Roncero, M.I., Seong, K.Y., Tetko, I.V., Urban, M., Waalwijk, C., Ward, T.J., Yao, J., Birren, B.W., Kistler, H.C.: The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317(5843), 1400–1402 (2007)CrossRefGoogle Scholar
  23. 23.
    Wise, R.P., Caldo, R.A., Hong, L., Shen, L., Cannon, E., Dickerson, J.A.: BarleyBase/PLEXdb. Methods in Molecular Biology 406, 347–363 (2007)Google Scholar
  24. 24.
    Zhao, X.M., Zhang, X.W., Tang, W.H., Chen, L.: FPPI: Fusarium graminearum protein-protein interaction database. J. Proteome Res. 8(10), 4714–4721 (2009)CrossRefGoogle Scholar
  25. 25.
    Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K., Ohta, H.: ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research 35(suppl. 1), D863–D869 (2007)CrossRefGoogle Scholar
  26. 26.
    Zhao, X.-M., Zhang, X.-W., Tang, W.-H., Chen, L.: FPPI: Fusarium graminearum Protein-Protein Interaction Database. Journal of Proteome Research 8(10), 4714–4721 (2009)CrossRefGoogle Scholar
  27. 27.
    Kohler, J., Baumbach, J., Taubert, J., Specht, M., Skusa, A., Ruegg, A., Rawlings, C., Verrier, P., Philippi, S.: Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 22(11), 1383–1390 (2006)CrossRefGoogle Scholar
  28. 28.
    Lysenko, A., Defoin-Platel, M., Hassani-Pak, K., Taubert, J., Hodgman, C., Rawlings, C., Saqi, M.: Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis. BMC Bioinformatics 12(1), 203Google Scholar
  29. 29.
    Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)Google Scholar
  30. 30.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene Ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)CrossRefGoogle Scholar
  31. 31.
    Chen, J., Yuan, B.: Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)CrossRefGoogle Scholar
  32. 32.
    R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2010)Google Scholar
  33. 33.
  34. 34.
    Son, H., Seo, Y., Min, K., Park, A., Lee, J., Jin, J., Lin, Y., Cao, P., Hong, S., Kim, E., Lee, S., Cho, A., Lee, S., Kim, M., Kim, Y., Kim, J., Kim, J., Choi, G., Yun, S., Lim, J., Kim, M., Lee, Y., Choi, Y., Lee, Y.: A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathogens 7, e1002310 (2011)Google Scholar
  35. 35.
    Winnenburg, R., Baldwin, T.K., Urban, M., Rawlings, C., Kohler, J., Hammond-Kosack, K.E.: PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 64(Database issue), D459–D464 (2006)Google Scholar
  36. 36.
    Winnenburg, R., Urban, M., Beacham, A., Baldwin, T.K., Holland, S., Lindeberg, M., Hansen, H., Rawlings, C., Hammond-Kosack, K.E., Kohler, J.: PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res. 6(Database issue), D572–D576 (2008)Google Scholar
  37. 37.
    Oidea, S., Moederb, W., Krasnoffc, S., Gibsonc, D., Haasd, H., Yoshiokab, K., Turgeona, B.G.: NPS6, Encoding a Nonribosomal Peptide Synthetase Involved in Siderophore-Mediated Iron Metabolism, Is a Conserved Virulence Determinant of Plant Pathogenic Ascomycetes. The Plant Cell 18, 2836–2853 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Laura Bennett
    • 1
  • Artem Lysenko
    • 2
  • Lazaros G. Papageorgiou
    • 3
  • Martin Urban
    • 4
  • Kim Hammond-Kosack
    • 4
  • Chris Rawlings
    • 2
  • Mansoor Saqi
    • 2
  • Sophia Tsoka
    • 1
  1. 1.Department of Informatics, School of Natural and Mathematical SciencesKing’s College LondonLondonUK
  2. 2.Department of Computational and Systems BiologyRothamsted ResearchHarpendenUK
  3. 3.Centre for Process Systems Engineering, Department of Chemical EngineeringUniversity College LondonLondonUK
  4. 4.Department of Plant Biology and Crop SciencesRothamsted ResearchHarpendenUK

Personalised recommendations