Towards an Ontology of Biomodelling

  • Larisa Soldatova
  • Qian Gao
  • David Gilbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7605)


We present a core Ontology of Biomodelling (OBM), which formally defines principle entities of modelling of biological systems, and follows a structural approach for the engineering of biochemical network models. OBM is fully interoperable with relevant resources, e.g. GO, SBML, ChEBI, and the recording of biomodelling knowledge with Ontology of Biomedical investigations (OBI) ensures efficient sharing and re-use of information, reproducibility of developed biomodels, retrieval of information regarding tools, methods, tasks, bio-models and their parts. An initial version of OBM is available at .


ontology knowledge representation systems biology modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brazdil, P., Carrier, G.C., Soares, C., Vilalta, R.: Metalearning. Applications to Data Mining. Springer (2009)Google Scholar
  2. 2.
    Breitling, R., Donaldson, R., Gilbert, D., Heiner, M.: Biomodel engineering - from structure to behavior. Trans. on Comput. Syst. Biol. 12, 1–12 (2010)CrossRefGoogle Scholar
  3. 3.
    Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Briefings in Bioinformatics 12 (2008)Google Scholar
  4. 4.
    Brinkman, R.R., Courtot, M., Derom, D., Fostel, J.M., He, Y., Lord, P., Malone, J., Parkinson, H., Peters, B., Rocca-Serra, P., Ruttenberg, A., Sansone, S.-A., Soldatova, L.N., Stoeckert, C.J., Turner, J.A., Zheng, J., The OBI Consortium: Modeling biomedical experimental processes with OBI. J. of Biomedical Semantics 1, 1–12 (2010)Google Scholar
  5. 5.
    Gao, Q., Gilbert, D., Heiner, M., Liu, F., Maccagnola, D., Tree, D.: Multiscale modelling and analysis of planar cell polarity in the drosophila wing. IEEE/ACM Transactions on Computational Biology and Bioinformatics (in press, 2012)Google Scholar
  6. 6.
    Mizoguchi, R., Vanwelkenhuysen, J., Ikeda, M.: Towards very large knowledge bases. Task ontology for reuse of problem solving knowledge. IOS Press (1995)Google Scholar
  7. 7.
    Panov, P., Džeroski, S., Soldatova, L.N.: OntoDM: An ontology of data mining. In: ICDMW 2008: Proceedings of the 2008 IEEE International Conference on Data Mining Workshops, pp. 752–760. IEEE Computer Society (2008)Google Scholar
  8. 8.
    Panov, P., Soldatova, L.N., Džeroski, S.: Towards an Ontology of Data Mining Investigations. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 257–271. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Larisa Soldatova
    • 1
  • Qian Gao
    • 1
  • David Gilbert
    • 1
  1. 1.Department of Information Systems and ComputingBrunel UniversityLondonUK

Personalised recommendations