ManyCell: A Multiscale Simulator for Cellular Systems

  • Joseph O. Dada
  • Pedro Mendes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7605)

Abstract

The emergent properties of multiscale biological systems are driven by the complex interactions of their internal compositions usually organized in hierarchical scales. A common representation takes cells as the basic units which are organized in larger structures: cultures, tissues and organs. Within cells there is also a great deal of organization, both structural (organelles) and biochemical (pathways). A software environment capable of minimizing the computational cost of simulating large-scale multiscale models is required to help understand the functional behaviours of these systems. Here we present ManyCell, a multiscale simulation software environment for efficient simulation of such cellular systems. ManyCell does not only allow the integration and simulation of models from different biological scales, but also combines innovative multiscale methods with distributed computing approaches to accelerate the process of simulating large-scale multiscale agent-based models. Thereby opening up the possibilities of understanding the functional behaviour of cellular systems in an efficient way.

Keywords

multiscale simulation modelling agent-based ODE software 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dada, J.O., Mendes, P.: Multi-scale modelling and simulation in systems biology. Integr. Biol. 3(2), 86–96 (2011)CrossRefGoogle Scholar
  2. 2.
    Pope, S.: Computation efficient implementation of combustion chemistry using in situ adaptive tabulation. Combustion Theory Modelling 1, 41–63 (1997)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hoops, S., et al.: Copasi—a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRefGoogle Scholar
  4. 4.
    Dada, J.O., Mendes, P.: Design and Architecture of Web Services for Simulation of Biochemical Systems. In: Paton, N.W., Missier, P., Hedeler, C. (eds.) DILS 2009. LNCS, vol. 5647, pp. 182–195. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRefGoogle Scholar
  6. 6.
    Le Novère, N., et al.: Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34, 689–691 (2006)CrossRefGoogle Scholar
  7. 7.
    Dada, J.O., et al.: SBRML: a markup language for associating systems biology data with models. Bioinformatics 26(7), 932–938 (2010)CrossRefGoogle Scholar
  8. 8.
    van Engelen, R.A., Gallivany, K.A.: The gsoap toolkit for web services and peer-to-peer computing networks. In: 2nd IEEE International Symposium on Cluster Computing and the Grid, pp. 128–135 (2002)Google Scholar
  9. 9.
    Da-Jun, T., Tang, F., Lee, T., Sarda, D., Krishnan, A., Goryachev, A.: Parallel Computing Platform for the Agent-Based Modeling of Multicellular Biological Systems. In: Liew, K.-M., Shen, H., See, S., Cai, W. (eds.) PDCAT 2004. LNCS, vol. 3320, pp. 5–8. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Chen, K.C., et al.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell. 15(8), 3841–3862 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joseph O. Dada
    • 1
    • 2
  • Pedro Mendes
    • 1
    • 2
    • 3
  1. 1.Manchester Institute of BiotechnologyUK
  2. 2.School of Computer ScienceThe University of ManchesterUK
  3. 3.Virginia Bioinformatics InstituteBlacksburgUK

Personalised recommendations