Revisiting the Training of Logic Models of Protein Signaling Networks with ASP

  • Santiago Videla
  • Carito Guziolowski
  • Federica Eduati
  • Sven Thiele
  • Niels Grabe
  • Julio Saez-Rodriguez
  • Anne Siegel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7605)


A fundamental question in systems biology is the construction and training to data of mathematical models. Logic formalisms have become very popular to model signaling networks because their simplicity allows us to model large systems encompassing hundreds of proteins. An approach to train (Boolean) logic models to high-throughput phospho-proteomics data was recently introduced and solved using optimization heuristics based on stochastic methods. Here we demonstrate how this problem can be solved using Answer Set Programming (ASP), a declarative problem solving paradigm, in which a problem is encoded as a logical program such that its answer sets represent solutions to the problem. ASP has significant improvements over heuristic methods in terms of efficiency and scalability, it guarantees global optimality of solutions as well as provides a complete set of solutions. We illustrate the application of ASP with in silico cases based on realistic networks and data.


Logic modeling answer set programming protein signaling networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., Schultz, N., Bader, G.D., Sander, C.: Pathway Commons, a web resource for biological pathway data. Nucleic Acids Research 39(Database issue), D685–D690 (2011)CrossRefGoogle Scholar
  2. 2.
    Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: PID: the Pathway Interaction Database. Nucleic Acids Research 37(Database issue), D674–D679 (2009)CrossRefGoogle Scholar
  3. 3.
    Zinovyev, A., Viara, E., Calzone, L., Barillot, E.: BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks. Bioinformatics 24(6), 876–877 (2008)CrossRefGoogle Scholar
  4. 4.
    Guziolowski, C., Kittas, A., Dittmann, F., Grabe, N.: Automatic generation of causal networks linking growth factor stimuli to functional cell state changes. FEBS Journal (2012)Google Scholar
  5. 5.
    Palmisano, G., Thingholm, T.E.: Strategies for quantitation of phosphoproteomic data. Expert Review Of Proteomics 7(3), 439–456 (2010)CrossRefGoogle Scholar
  6. 6.
    Terfve, C., Saez-Rodriguez, J.: Modeling Signaling Networks Using High-throughput Phospho-proteomics. Advances in Experimental Medicine and Biology 736, 19–57 (2012)CrossRefGoogle Scholar
  7. 7.
    Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007)CrossRefGoogle Scholar
  8. 8.
    Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E., Guthke, R.: Gene regulatory network inference: data integration in dynamic models-a review. Bio Systems 96(1), 86–103 (2009)CrossRefGoogle Scholar
  9. 9.
    Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger, D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Molecular Systems Biology 5(331), 331 (2009)Google Scholar
  10. 10.
    Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.: Crowdsourcing network inference: the DREAM predictive signaling network challenge. Sci. Signal 4(189), mr7 (2011)Google Scholar
  11. 11.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  12. 12.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving, pp. 386–392 (2007)Google Scholar
  13. 13.
    Mitsos, A., Melas, I., Siminelakis, P., Chairakaki, A., Saez-Rodriguez, J., Alexopoulos, L.G.: Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Comp. Biol. 5(12), e1000591 (2009)Google Scholar
  14. 14.
    Klamt, S., Haus, U.U., Theis, F.J.: Hypergraphs and Cellular Networks. PLoS Comput. Biol. 5(5), e1000385 (2009)Google Scholar
  15. 15.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., Gilles, E.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7(1), 56 (2006)CrossRefGoogle Scholar
  16. 16.
    Saez-Rodriguez, J., Simeoni, L., Lindquist, J., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.U., Weismantel, R., Gilles, E., Klamt, S., Schraven, B.: A Logical Model Provides Insights into T Cell Receptor Signaling. PLoS Comput. Biol. 3(8), e163 (2007)Google Scholar
  17. 17.
    Christensen, T.S., Oliveira, A.P., Nielsen, J.: Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Systems Biology 3, 7 (2009)CrossRefGoogle Scholar
  18. 18.
    Tsang, E.: Foundations of constraint satisfaction. Academic Pr. (1993)Google Scholar
  19. 19.
    Haus, U.U., Niermann, K., Truemper, K., Weismantel, R.: Logic integer programming models for signaling networks. J. Comput. Biol. 16(5), 725–743 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the Input Language of ASP Grounder Gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 502–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Morris, M.K., Saez-Rodriguez, J., Clarke, D.C., Sorger, P.K., Lauffenburger, D.A.: Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 7(3), e1001099 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Santiago Videla
    • 1
    • 2
  • Carito Guziolowski
    • 3
    • 4
  • Federica Eduati
    • 5
    • 6
  • Sven Thiele
    • 2
    • 1
    • 7
  • Niels Grabe
    • 3
  • Julio Saez-Rodriguez
    • 6
  • Anne Siegel
    • 1
    • 2
  1. 1.CNRS, UMR 6074 IRISARennes CedexFrance
  2. 2.INRIA, Centre Rennes-Bretagne-Atlantique, Projet DylissRennes CedexFrance
  3. 3.National Center for Tumor Diseases, TIGA CenterUniversity HeidelbergGermany
  4. 4.École Centrale de Nantes, IRCCyN, UMR CNRS 6597Nantes cedex 3France
  5. 5.Department of Information EngineeringUniversity of PadovaPadovaItaly
  6. 6.European Bioinformatics Institute (EMBL-EBI) Wellcome Trust Genome CampusCambridgeUK
  7. 7.Institute for Computer ScienceUniversity of PotsdamGermany

Personalised recommendations