Concretizing the Process Hitting into Biological Regulatory Networks

  • Maxime Folschette
  • Loïc Paulevé
  • Katsumi Inoue
  • Morgan Magnin
  • Olivier Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7605)

Abstract

The Process Hitting (PH) is a recently introduced framework to model concurrent processes. Its major originality lies in a specific restriction on the causality of actions, which makes the formal analysis of very large systems tractable. PH is suitable to model Biological Regulatory Networks (BRNs) with complete or partial knowledge of cooperations between regulators by defining the most permissive dynamics with respect to these constraints.

On the other hand, the qualitative modeling of BRNs has been widely addressed using René Thomas’ formalism, leading to numerous theoretical work and practical tools to understand emerging behaviors.

Given a PH model of a BRN, we first tackle the inference of the underlying Interaction Graph between components. Then the inference of corresponding Thomas’ models is provided using Answer Set Programming, which allows notably an efficient enumeration of (possibly numerous) compatible parametrizations.

In addition to giving a formal link between different approaches for qualitative BRNs modeling, this work emphasizes the ability of PH to deal with large BRNs with incomplete knowledge on cooperations, where Thomas’ approach fails because of the combinatorics of parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42(3), 563–585 (1973)CrossRefGoogle Scholar
  2. 2.
    Richard, A., Comet, J.P.: Necessary conditions for multistationarity in discrete dynamical systems. Discrete Applied Mathematics 155(18), 2403–2413 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Advances in Applied Mathematics 4(3), 335–350 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: A Reduction of Logical Regulatory Graphs Preserving Essential Dynamical Properties. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 266–280. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Richard, A., Comet, J.P., Bernot, G.: Formal Methods for Modeling Biological Regulatory Networks. In: Modern Formal Methods and App., pp. 83–122 (2006)Google Scholar
  6. 6.
    Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Siebert, H., Bockmayr, A.: Incorporating Time Delays into the Logical Analysis of Gene Regulatory Networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 169–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Ahmad, J., Roux, O., Bernot, G., Comet, J.P., Richard, A.: Analysing formal models of genetic regulatory networks with delays. International Journal of Bioinformatics Research and Applications (IJBRA) 4(2) (2008)Google Scholar
  9. 9.
    Twardziok, S., Siebert, H., Heyl, A.: Stochasticity in reactions: a probabilistic boolean modeling approach. In: Computational Methods in Systems Biology, pp. 76–85. ACM (2010)Google Scholar
  10. 10.
    Paulevé, L., Magnin, M., Roux, O.: Refining Dynamics of Gene Regulatory Networks in a Stochastic π-Calculus Framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575, pp. 171–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Paulevé, L., Magnin, M., Roux, O.: Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science (2012) (in press) (preprint), http://loicpauleve.name/mscs.pdf
  12. 12.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  13. 13.
    Khalis, Z., Comet, J.P., Richard, A., Bernot, G.: The SMBioNet method for discovering models of gene regulatory networks. Genes, Genomes and Genomics 3(special issue 1), 15–22 (2009)Google Scholar
  14. 14.
    Corblin, F., Fanchon, E., Trilling, L.: Applications of a formal approach to decipher discrete genetic networks. BMC Bioinformatics 1(1), 385 (2010)CrossRefGoogle Scholar
  15. 15.
    Corblin, F., Fanchon, E., Trilling, L., Chaouiya, C., Thieffry, D.: Automatic Inference of Regulatory and Dynamical Properties from Incomplete Gene Interaction and Expression Data. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds.) IPCAT 2012. LNCS, vol. 7223, pp. 25–30. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Bernot, G., Cassez, F., Comet, J.P., Delaplace, F., Müller, C., Roux, O.: Semantics of biological regulatory networks. Electronic Notes in Theoretical Computer Science 180(3), 3–14 (2007)CrossRefGoogle Scholar
  17. 17.
    Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth, T., Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Systems Biology 3(1) (2009)Google Scholar
  18. 18.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., Gilles, E.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7(1), 56 (2006)CrossRefGoogle Scholar
  19. 19.
    Bernot, G., Comet, J.P., Khalis, Z.: Gene regulatory networks with multiplexes. In: European Simulation and Modelling Conference Proceedings, pp. 423–432 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maxime Folschette
    • 1
    • 2
  • Loïc Paulevé
    • 3
  • Katsumi Inoue
    • 2
  • Morgan Magnin
    • 1
  • Olivier Roux
    • 1
  1. 1.(Institut de Recherche en Communications et Cybernétique de Nantes)LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597Nantes Cedex 3France
  2. 2.National Institute of InformaticsChiyoda-kuJapan
  3. 3.LIX, École PolytechniquePalaiseau CedexFrance

Personalised recommendations