Advertisement

A Landmark-Based Primal-Dual Approach for Discontinuity Preserving Registration

  • Silja Kiriyanthan
  • Ketut Fundana
  • Tahir Majeed
  • Philippe C. Cattin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7601)

Abstract

Discontinuous motion is quite common in the medical field as for example in the case of breathing induced organ motion. Registration methods that are able to preserve discontinuities are therefore of special interest. To achieve this goal we developed in our previous work a framework that combines motion segmentation and registration. To avoid unreliable motion fields the incorporation of landmark correspondences can be a remedy. We therefore describe in this paper how we integrate the landmarks in our variational approach and how to solve the minimisation problem with a primal-dual algorithm. Qualitative and quantitative results are shown for real MR images of breathing induced liver motion.

Keywords

Motion registration liver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amiaz, T., Kiryati, N.: Piecewise-Smooth Dense Optical Flow via Level Sets. International Journal of Computer Vision 68(2), 111–124 (2006)CrossRefGoogle Scholar
  2. 2.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Brox, T., Malik, J.: Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(3), 500–513 (2011)CrossRefGoogle Scholar
  4. 4.
    Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models. Siam Journal on Applied Mathematics 66(5), 1632–1648 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Demirovic, D., Serifovic, A., Cattin, P.C.: An anisotropic diffusion regularized demons for improved registration of sliding organs. In: 18th International Electrotechnical and Computer Science Conference, ERK (2009)Google Scholar
  7. 7.
    Haber, E., Heldmann, S., Modersitzki, J.: A Scale-Space Approach to Landmark Constrained Image Registration. Scale Space and Variational Methods in Computer Vision 5567, 612–623 (2009)CrossRefGoogle Scholar
  8. 8.
    Johnson, H., Christensen, G.: Consistent Landmark and Intensity-Based Image Registration. IEEE Transactions on Medical Imaging 21(5), 450–461 (2002)CrossRefGoogle Scholar
  9. 9.
    Kiriyanthan, S., Fundana, K., Cattin, P.C.: Discontinuity Preserving Registration of Abdominal MR Images with Apparent Sliding Organ Motion. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 231–239. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C.: Discontinuity Preserving Registration through Motion Segmentation: A Primal-Dual Approach (submitted)Google Scholar
  11. 11.
    Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C.: A Primal-Dual Approach for Discontinuity Preserving Registration. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 350–353 (May 2012)Google Scholar
  12. 12.
    Kybic, J., Unser, M.: Fast Parametric Elastic Image Registration. IEEE Transactions on Image Processing 12(11), 1427–1442 (2003)CrossRefGoogle Scholar
  13. 13.
    Mumford, D., Shah, J.: Optimal Approximations by Piecewise Smooth Functions and Associated Variational-Problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Paquin, D., Levy, D., Xing, L.: Hybrid Multiscale Landmark and Deformable Image Registration. Mathematical Biosciences and Engineering 4(4), 711–737 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Pock, T., Urschler, M., Zach, C., Beichel, R.R., Bischof, H.: A Duality Based Algorithm for TV-L 1-Optical-Flow Image Registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 511–518. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physica D 60(1-4), 259–268 (1992)zbMATHCrossRefGoogle Scholar
  17. 17.
    Schmidt-Richberg, A., Ehrhardt, J., Werner, R., Handels, H.: Slipping Objects in Image Registration: Improved Motion Field Estimation with Direction-Dependent Regularization. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 755–762. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Vese, L.A., Chan, T.F.: A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. J. of Computer Vision 50(3), 271–293 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Yu, G., Morel, J.M.: ASIFT: An Algorithm for Fully Affine Invariant Comparison. Image Processing On Line (2011), doi: http://dx.doi.org/10.5201/ipol.2011.my-asift

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Silja Kiriyanthan
    • 1
  • Ketut Fundana
    • 1
  • Tahir Majeed
    • 1
  • Philippe C. Cattin
    • 1
  1. 1.Medical Image Analysis CenterUniversity of BaselBaselSwitzerland

Personalised recommendations