Modeling End-Users as Contributors in Human Computation Applications

  • Roula Karam
  • Piero Fraternali
  • Alessandro Bozzon
  • Luca Galli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7602)

Abstract

User models have been defined since the ’80s, mainly for the purpose of building context-based, user-adaptive applications. However, the advent of social networked media, serious games, and crowdsourcing platforms calls for a more pervasive notion of user model, capable of representing the multiple facets of a social user, including his social ties, capabilities, activity history, and topical affinities. In this paper, we overview several user models proposed recently to address the platform-independent representation of users embedded in a social context, and discuss the features of the CUbRIK user model, which is designed to support multi-platform human computation applications where users are called as collaborators in the resolution of complex tasks found in the multimedia information retrieval field.

Keywords

Human Computation Multimedia User Modeling Social Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, F., Celik, I., Hauff, C., Hollink, L., Houben, G.-J.: U-sem: Semantic enrichment, user modeling and mining of usage data on the social web. CoRR, abs/1104.0126 (2011)Google Scholar
  2. 2.
    Aroyo, L., Houben, G.-J.: User modeling and adaptive semantic web. Semantic Web 1(1-2), 105–110 (2010)Google Scholar
  3. 3.
    Axenopoulos, A., Daras, P., Malassiotis, S., Croce, V., Lazzaro, M., Etzold, J., Grimm, P., Massari, A., Camurri, A., Steiner, T., Tzovaras, D.: I-search: A unified framework for multimodal search and retrieval, pp. 130–141 (2012)Google Scholar
  4. 4.
    Berkovsky, S., Kuflik, T., Ricci, F.: Cross-representation mediation of user models. User Model. User-Adapt. Interact. 19(1-2), 35–63 (2009)CrossRefGoogle Scholar
  5. 5.
    Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher. In: Mille, A., Gandon, F.L., Misselis, J., Rabinovich, M., Staab, S. (eds.) WWW 2012, pp. 1009–1018. ACM (2012)Google Scholar
  6. 6.
    Brambilla, M., Fraternali, P., Vaca, C.: BPMN and design patterns for engineering social BPM solutions. In: Proceedings of the Fourth International Workshop on BPM and Social Software, BPMS 2011 (August 2011)Google Scholar
  7. 7.
    Carmagnola, F., Cena, F., Gena, C.: User modeling in the social web, pp. 745–752 (2007)Google Scholar
  8. 8.
    Carmagnola, F., Cena, F., Gena, C.: User model interoperability: a survey. User Model. User-Adapt. Interact. 21(3), 285–331 (2011)CrossRefGoogle Scholar
  9. 9.
    Cena, F., Dattolo, A., De Luca, E.W., Lops, P., Plumbaum, T., Vassileva, J.: Semantic adaptive social web, pp. 176–180 (2011)Google Scholar
  10. 10.
    Kapsammer, E., Mitsch, S., Pröll, B., et al.: A first step towards a conceptual reference model for comparing social user profiles (2011)Google Scholar
  11. 11.
    Fraternali, P., et al.: The CuBRIK project: human-enhanced time-aware multimedia search, pp. 259–262 (2012)Google Scholar
  12. 12.
    Heckmann, D., Schwarzkopf, E., Mori, J., Dengler, D., Kröner, A.: The user model and context ontology gumo revisited for future web 2.0 extensions. In: Proc. of the Int. Workshop on Contexts and Ontologies: Representation and Reasoning, C&O:RR (2007)Google Scholar
  13. 13.
    Howe, J.: The rise of crowdsourcing. Wired 14(6) (2006)Google Scholar
  14. 14.
    Law, E., von Ahn, L.: Input-agreement: a new mechanism for collecting data using human computation games. In: Proc. CHI 2009, pp. 1197–1206 (2009)Google Scholar
  15. 15.
    Mehta, B., Niederée, C., Stewart, A., Degemmis, M., Lops, P., Semeraro, G.: Ontologically-enriched unified user modeling for cross-system personalization, pp. 119–123 (2005)Google Scholar
  16. 16.
    Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a growing field. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, CHI 2011, pp. 1403–1412 (2011)Google Scholar
  17. 17.
    Reinecke, K., Reif, G., Bernstein, A.: Cultural user modeling with cumo: An approach to overcome the personalization bootstrapping problem (2007)Google Scholar
  18. 18.
    Sosnovsky, S.A., Dicheva, D.: Ontological technologies for user modelling. IJMSO 5(1), 32–71 (2010)CrossRefGoogle Scholar
  19. 19.
    von Ahn, L.: Games with a purpose. Computer 39, 92–94 (2006)CrossRefGoogle Scholar
  20. 20.
    von Ahn, L.: Human computation. In: CIVR (2009)Google Scholar
  21. 21.
    Zhang, F., Song, Z., Zhang, H.: Web service based architecture and ontology based user model for cross-system personalization, pp. 849–852 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roula Karam
    • 1
  • Piero Fraternali
    • 1
  • Alessandro Bozzon
    • 1
  • Luca Galli
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItaly

Personalised recommendations