BOINC-MR: MapReduce in a Volunteer Environment

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7565)


Volunteer Computing (VC) harnesses computing resources from idle machines around the world to execute independent tasks, following a centralized master/worker model.

We present BOINC-MR, a system able to run MapReduce applications on top of BOINC, the most popular VC middleware in existence. We describe BOINC-MR’s architecture and evaluate its performance with a typical MapReduce application. Our results show that BOINC-MR yields a performance increase of 64% in application turnaround time and close to 50% reduction in bandwidth usage in the server side, when compared to the unmodified BOINC system.


Volunteer Computing MapReduce Adaptive Middleware 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D.P.: Boinc status report. In: The 7th BOINC Workshop (2011)Google Scholar
  2. 2.
    Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID 2004, pp. 4–10. IEEE Computer Society, Washington, DC (2004)CrossRefGoogle Scholar
  3. 3.
    Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V., Lodygensky, O.: Computing on large-scale distributed systems: Xtremweb architecture, programming models, security, tests and convergence with grid. Future Gener. Comput. Syst. 21, 417–437 (2005)CrossRefGoogle Scholar
  4. 4.
    Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM Comput. Commun. Rev. 33, 3–12 (2003)CrossRefGoogle Scholar
  5. 5.
    Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes, R., Mowbray, M.: Labs of the world, unite!!? Journal of Grid Computing 4, 225–246 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Costa, F., Kelley, I., Silva, L., Fedak, G.: Optimizing data distribution in desktop grid platforms. Parallel Processing Letters (PPL) 18(3), 391–410 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Volunteer computing and desktop cloud: The Cloud@Home paradigm. In: Eighth IEEE International Symposium on Network Computing and Applications, pp. 134–139. IEEE (July 2009)Google Scholar
  8. 8.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  9. 9.
    Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.P.: Cost-benefit analysis of cloud computing versus desktop grids. In: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp. 1–12. IEEE Computer Society, Washington, DC (2009)Google Scholar
  10. 10.
    Lin, H., Ma, X., Archuleta, J., Feng, W.C., Gardner, M., Zhang, Z.: Moon: Mapreduce on opportunistic environments. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC 2010, pp. 95–106. ACM, New York (2010)CrossRefGoogle Scholar
  11. 11.
    Tang, B., Moca, M., Chevalier, S., He, H., Fedak, G.: Towards mapreduce for desktop grid computing. In: Proceedings of the 2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2010, pp. 193–200. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Distributed Systems GroupINESC-ID, Technical University of LisbonLisboaPortugal

Personalised recommendations