Advertisement

Goal-Based Composition of Stateful Services for Smart Homes

  • Giuseppe De Giacomo
  • Claudio Di Ciccio
  • Paolo Felli
  • Yuxiao Hu
  • Massimo Mecella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7565)

Abstract

The emerging trend in process management and in service oriented applications is to enable the composition of new distributed processes on the basis of user requests, through (parts of) available (and often embedded in the environment) services to be composed and orchestrated in order to satisfy such requests. Here, we consider a user process as specified in terms of repeated goals that the user may choose to get fulfilled, organized in a kind of routine. Available services are suitably composed and orchestrated in order to realize such a process. In particular we focus on smart homes, in which available services are those ones offered by sensor and actuator devices deployed in the home, and the target user process is directly and continuously controlled by the inhabitants, through actual goal choices. We provide a solver that synthesizes the orchestrator for the requested process and we show its practical applicability in a real smart home use case.

Keywords

process/service composition smart houses/buildings planning techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baligand, F., Rivierre, N., Ledoux, T.: A Declarative Approach for QoS-Aware Web Service Compositions. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 422–428. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 530–537. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal Methods for Service Composition. Annals of Mathematics, Computing and Teleinformatics 1(5), 1–10 (2007)Google Scholar
  4. 4.
    Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic Service Composition based on Behavioural Descriptions. International Journal of Cooperative Information Systems 14(4), 333–376 (2005)CrossRefGoogle Scholar
  5. 5.
    Blythe, J., Ambite, J. (eds.): Proc. of ICAPS 2004 Workshop on Planning and Scheduling for Web and Grid Services (2004)Google Scholar
  6. 6.
    Cardoso, J., Sheth, A.P.: Introduction to Semantic Web Services and Web Process Composition. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 1–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Catarci, T., Di Ciccio, C., Forte, V., Iacomussi, E., Mecella, M., Santucci, G., Tino, G.: Service Composition and Advanced User Interfaces in the Home of Tomorrow: The SM4All Approach. In: Gabrielli, S., Elias, D., Kahol, K. (eds.) AmBI-SYS 2011. LNICST, vol. 70, pp. 12–19. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Curbera, F., Sheth, A., Verma, K.: Services Oriented Architectures and Semantic Web Processes. In: ICWS 2004 (2004)Google Scholar
  9. 9.
    De Giacomo, G., Patrizi, F., Sardiña, S.: Agent Programming via Planning Programs. In: AAMAS 2010 (2010)Google Scholar
  10. 10.
    De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player Game Structures for Generalized Planning and Agent Composition. In: AAAI 2010 (2010)Google Scholar
  11. 11.
    Di Ciccio, C., Mecella, M., Caruso, M., Forte, V., Iacomussi, E., Rasch, K., Querzoni, L., Santucci, G., Tino, G.: The Homes of Tomorrow: Service Composition and Advanced User Interfaces. ICST Trans. Ambient Systems 11(10-12) (2011)Google Scholar
  12. 12.
    Hassen, R.R., Nourine, L., Toumani, F.: Protocol-Based Web Service Composition. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 38–53. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation through Heuristic Search. Journal of Artificial Intelligence Research 14, 253–302 (2001)zbMATHGoogle Scholar
  14. 14.
    Kaldeli, E., Warriach, E.U., Bresser, J., Lazovik, A., Aiello, M.: Interoperation, Composition and Simulation of Services at Home. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 167–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Klein, A., Ishikawa, F., Honiden, S.: Efficient QoS-Aware Service Composition with a Probabilistic Service Selection Policy. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 182–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    McIlraith, S., Son, T.: Adapting GOLOG for Composition of Semantic Web Services. In: KR 2002 (2002)Google Scholar
  17. 17.
    Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing Web Services on the Semantic Web. Very Large Data Base Journal 12(4), 333–351 (2003)CrossRefGoogle Scholar
  18. 18.
    De Paoli, F., Lulli, G., Maurino, A.: Design of Quality-Based Composite Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated Composition of Web Services by Planning at the Knowledge Level. In: IJCAI 2005 (2005)Google Scholar
  20. 20.
    Pnueli, A., Shahar, E.: The TLV System and its Applications. Tech. rep., Department of Computer Science, Weizmann Institute, Rehovot, Israel (1996)Google Scholar
  21. 21.
    Sardiña, S., De Giacomo, G.: Realizing Multiple Autonomous Agents through Scheduling of Shared Devices. In: ICAPS 2008 (2008)Google Scholar
  22. 22.
    Schuller, D., Miede, A., Eckert, J., Lampe, U., Papageorgiou, A., Steinmetz, R.: QoS-Based Optimization of Service Compositions for Complex Workflows. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 641–648. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive Service Composition Based on Reinforcement Learning. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.S.: Automating DAML-S Web Services Composition Using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Yang, J., Papazoglou, M.: Service Components for Managing the Life-cycle of Service Compositions. Information Systems 29(2), 97–125 (2004)CrossRefGoogle Scholar
  26. 26.
    Zhao, H., Doshi, P.: A Hierarchical Framework for Composing Nested Web Processes. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 116–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giuseppe De Giacomo
    • 1
  • Claudio Di Ciccio
    • 1
  • Paolo Felli
    • 1
  • Yuxiao Hu
    • 2
  • Massimo Mecella
    • 1
  1. 1.Sapienza – Università di RomaItaly
  2. 2.Google WaterlooCanada

Personalised recommendations