An Accurate Model for Seaworthy Container Vessel Stowage Planning with Ballast Tanks

  • Dario Pacino
  • Alberto Delgado
  • Rune Møller Jensen
  • Tom Bebbington
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7555)


Seaworthy container vessel stowage plans generated under realistic assumptions are a key factor for stowage decision support systems in the shipping industry. We propose a linear model with ballast tanks for generating master plans, the first phase of a 2-phase stowage optimization approach, that includes the main stability and stress moments calculations. Our approach linearizes the center of gravity calculation and hydrostatic data tables of the vessel in order to formulate stability and stress moments constraints that can handle variable displacement. The accuracy level of these linearizations is evaluated when the displacement of the vessel is allowed to change within a small band.


Ballast Water Bonjean Area Displacement Range Container Type Ballast Tank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: An Experimental Comparison of Different Heuristics for the Master Bay Plan Problem. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 314–325. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Ambrosino, D., Sciomachen, A., Tanfani, E.: Stowing a conteinership: the master bay plan problem. Transportation Research Part A: Policy and Practice 38(2), 81–99 (2004)CrossRefGoogle Scholar
  3. 3.
    Aslidis, A.H.: Optimal Container Loading. Master’s thesis, Massachusetts Institute of Technology (1984)Google Scholar
  4. 4.
    Botter, R., Brinati, M.A.: Stowage container planning: A model for getting an optimal solution. In: Proceedings of the 7th Int. Conf. on Computer Applications in the Automation of Shipyard Operation and Ship Design, pp. 217–229 (1992)Google Scholar
  5. 5.
    Kang, J., Kim, Y.: Stowage planning in maritime container transportation. Journal of the Operations Research Society 53(4), 415–426 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Li, F., Tian, C., Cao, R., Ding, W.: An Integer Linear Programming for Container Stowage Problem. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 853–862. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T.: Fast Generation of Near-Optimal Plans for Eco-Efficient Stowage of Large Container Vessels. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2011. LNCS, vol. 6971, pp. 286–301. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Tupper, E.C.: Introdution to Naval Architecture. Elsevier (2009)Google Scholar
  9. 9.
    Wilson, I.D., Roach, P.: Principles of combinatorial optimization applied to container-ship stowage planning. Journal of Heuristics (5), 403–418 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dario Pacino
    • 1
  • Alberto Delgado
    • 1
  • Rune Møller Jensen
    • 1
  • Tom Bebbington
    • 2
  1. 1.IT-University of CopenhagenDenmark
  2. 2.Maersk Line Operations, Global Stowage PlanningSingapore

Personalised recommendations