Advertisement

An h-r Moving Mesh Method for One-Dimensional Time-Dependent PDEs

  • Benjamin Ong
  • Robert Russell
  • Steven Ruuth

Summary

We propose a new moving mesh method suitable for solving time-dependent partial differential equations (PDEs) in ℝ1 which have fine scale solution structures that develop or dissipate. A key feature of the method is its ability to add or remove mesh nodes in a smooth manner and that it is consistent with r-refinement schemes. Central to our approach is an implicit representation of a Lagrangian mesh as iso-contours of a level set function. The implicitly represented mesh is evolved by updating the underlying level set function using a derived level set moving mesh partial differential equation (LMPDE). The discretized LMPDE evolves the level set function in a manner that quasi-equidistributes a specified monitor function. Beneficial attributes of the method are that this construction guarantees that the mesh does not tangle, and that connectivity is retained. Numerical examples are provided to demonstrate the effectiveness of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Askes, H., Rodríguez-Ferran, A.: A combined hr-adaptive scheme based on domain subdivision. formulation and linear examples. International Journal for Numerical Methods in Engineering 51(3), 253–273 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cao, W., Huang, W., Russell, R.D.: A moving mesh method in multiblock domains with application to a combustion problem. Numer. Methods Partial Differential Equations 15(4), 449–467 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Capon, P.J., Jimack, P.K.: On the adaptive finite element solution of partial differential equations using h-r-refinement. Technical report, University of Leeds (1996)Google Scholar
  4. 4.
    de Boor, C.: Good approximation by splines with variable knots. In: Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972). Internat. Ser. Numer. Math., vol. 21, pp. 57–72. Birkhäuser, Basel (1973)Google Scholar
  5. 5.
    de Boor, C.: Good approximation by splines with variable knots. II. In: Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973). Lecture Notes in Math., vol. 363, pp. 12–20. Springer, Berlin (1974)CrossRefGoogle Scholar
  6. 6.
    Gelinas, R.J., Doss, S.K., Miller, K.: The moving finite element method: applications to general partial differential equations with multiple large gradients. Journal of Computational Physics 40(1), 202–249 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Huang, W., Kamenski, L., Lang, J.: A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates. J. Comput. Phys. 229(6), 2179–2198 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Huang, W., Ren, Y., Russell, R.D.: Moving mesh methods based on moving mesh partial differential equations. J. Comput. Phys. 113(2), 279–290 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Huang, W., Russell, R.D.: Analysis of moving mesh partial differential equations with spatial smoothing. SIAM J. Numer. Anal. 34(3), 1106–1126 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Applied Mathematical Sciences, vol. 174, p. 432. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lang, J., Cao, W., Huang, W., Russell, R.D.: A two-dimensional moving finite element method with local refinement based on a posteriori error estimates. Appl. Numer. Math. 46(1), 75–94 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Liao, G., Liu, F., de la Pena, G.C., Peng, D., Osher, S.: Level-set-based deformation methods for adaptive grids. J. Comput. Phys. 159(1), 103–122 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Piggott, M.D., Pain, C.C., Gorman, G.J., Power, P.W., Goddard, A.J.H.: h, r, and hr adaptivity with applications in numerical ocean modelling. Ocean Modelling 10(1-2), 95–113 (2005)CrossRefGoogle Scholar
  15. 15.
    Thompson, J.F., Soni, B.K., Weatherill, N.P.: Handbook of Grid Generation. CRC Press, Boca Raton (1999)zbMATHGoogle Scholar
  16. 16.
    Wang, H., Tang, H.: An efficient adaptive mesh redistribution method for a non-linear Dirac equation. J. Comput. Phys. 222(1), 176–193 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Yuan, L., Tang, T.: Resolving the shock-induced combustion by an adaptive mesh redistribution method. J. Comput. Phys. 224, 587–600 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benjamin Ong
    • 1
  • Robert Russell
    • 2
  • Steven Ruuth
    • 2
  1. 1.Institute for Cyber-Enabled ResesarchMichigan State UniversityEast LansingUSA
  2. 2.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations