Geometric Reasoning in Sketch-Based Volumetric Decomposition Framework for Hexahedral Meshing

  • Jean Hsiang-Chun Lu
  • Inho Song
  • William Roshan Quadros
  • Kenji Shimada

Summary

This paper presents a sketch-based volumetric decomposition framework using geometric reasoning to assist in hex meshing. The sketch-based user interface makes the framework user-friendly and intuitive; and the geometric reasoning engine makes the framework smarter and improves the usability. The system first creates a data structure containing B-Rep and 3D medial to capture the exterior and interior of the input model, respectively. The four-step geometric reasoning process consists of (1) Determining sweeping direction and two types of sweepable regions, (2) Providing visual aids on sweeping direction and sweepable region for decomposition, (3) Understanding user’s intent by using prioritized B-Rep and medial entities, and (4) smart decomposition operation. Imprint and merge operations are then performed on the decomposed model before passing it to the sweeping algorithm to create hex meshes. The sketch-based framework has been tested on industrial models.

Keywords

3D medial object geometric reasoning hexahedral meshing sketch-based decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yamakawa, S., Gentilini, I., Shimada, K.: Subdivision templates for converting a non-conformal hex-dominant mesh to a conformal hex-dominant mesh without pyramid elements. Engineering with Computers 27, 51–65 (2011)CrossRefGoogle Scholar
  2. 2.
    Tautges, T.J., Blacker, T., Mitchell, S.A.: The whisker weaving algorithm: A connectivity-based method for constructing all-hexahedral finite element meshes. International Journal for Numerical Methods in Engineering 39, 3327–3349 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Folwell, N.T., Mitchell, S.A.: Reliable whisker weaving via curve contraction. In: Proceedings of the 7th International Meshing Roundtable, pp. 365–378 (1998)Google Scholar
  4. 4.
    Schneiders, R.: Automatic generation of hexahedral finite element meshes. In: Proceedings of the 4th International Meshing Roundtable, pp. 103–114 (1995)Google Scholar
  5. 5.
    Schneiders, R.: A grid-based algorithm for the generation of hexahedral element meshes. Engineering with Computers 12, 168–177 (1996)CrossRefGoogle Scholar
  6. 6.
    Lu, J.H.-C., Song, I.H., Quadros, W.R., Shimada, K.: Pen-based user interface for geometric decomposition for hexahedral mesh generation. In: Proceedings of the 19th International Meshing Roundtable, pp. 263–278 (2010)Google Scholar
  7. 7.
    Lu, J.H.-C., Song, I., Quadros, W.R., Shimada, K.: Volumetric Decomposition via Medial Object and Pen-Based User Interface for Hexahedral Mesh Generation. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, vol. 90, pp. 179–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Subrahmanyam, S., Wozny, M.: An overview of automatic feature recognition techniques for computer-aidedprocessplanning. Computers in Industry 26, 1–21 (1995)CrossRefGoogle Scholar
  9. 9.
    Babic, B., Nesic, N., Miljkovic, Z.: A review of automated feature recognition with rule-based pattern recognition. Computers in Industry 59, 321–337 (2008)CrossRefGoogle Scholar
  10. 10.
    Kyprianou, L.: Shape classification in computer aided design. PhD Thesis, University of Cambridge (1980)Google Scholar
  11. 11.
    Lu, Y., Gadh, R., Tautges, T.J.: Feature based hex meshing methodology: feature recognition and volume decomposition. Computer-Aided Design 33(3), 221–232 (2001)CrossRefGoogle Scholar
  12. 12.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 362–380 (1967)Google Scholar
  13. 13.
    Price, M.A., Armstrong, C.G., Sabin, M.A.: Hexahedral mesh generation by medial surface subdivision: part I. solids with convex edges. International Journal for Numerical Methods in Engineering 38(19), 3335–3359 (1995)MATHCrossRefGoogle Scholar
  14. 14.
    Price, M.A., Armstrong, C.G.: Hexahedral mesh generation by medial surface subdivision: part II. solids with flat and concave edges. International Journal for Numerical Methods in Engineering 40(1), 111–136 (1997)CrossRefGoogle Scholar
  15. 15.
    Shih, B.-Y., Sakurai, H.: Automated hexahedral mesh generation by swept volume decomposition and recomposition. In: Proceeding of the 5th International Meshing Roundtable, pp. 273–280 (1996)Google Scholar
  16. 16.
    White, D.R., Saigal, S., Owen, S.J.: CCSweep: automatic decomposition of multi-sweep volumes. Engineering with Computers 20, 222–236 (2004)CrossRefGoogle Scholar
  17. 17.
    Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketching interface for 3D freeform design. In: Proceeding of the 26th Annual Conference on Computer Graphics and Interactive, pp. 409–416 (1999)Google Scholar
  18. 18.
    Varley, P.A.C., Suzuki, H., Mitani, J., Martin, R.R.: Shape classification in computer aided design. International Journal of Shape Modeling 6 (2000)Google Scholar
  19. 19.
    Masry, M., Kang, D., Lipson, H.: A freehand sketching interface for progressive construction of 3D objects. Computers and Graphics 29(4), 563–575 (2005)CrossRefGoogle Scholar
  20. 20.
    Kara, L.B., Shimada, K.: Construction and Modification of 3D Geometry Using a Sketch-based Interface. In: Proceeding of the EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, pp. 59–66 (2006)Google Scholar
  21. 21.
    ITI TranscenData, CAD Translation - CADFix, www.cadfix.com
  22. 22.
    Tautges, T.: CGM: a geometry interface for mesh generation, analysis and other application. Engineering with Computers 17, 299–314 (2001)MATHCrossRefGoogle Scholar
  23. 23.
    Schoof, L., Yarberry, V.: Exodus II a finite element data model. SAND92-2137, Sandia National Laboratories (1995)Google Scholar
  24. 24.
    Pointwise Inc., Multi-block grids for axial turbines (March 2011), www.pointwise.com/theconnector/March-2011/Gridding-an-Axial-Turbine-Video.shtml

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean Hsiang-Chun Lu
    • 1
  • Inho Song
    • 1
  • William Roshan Quadros
    • 2
  • Kenji Shimada
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations