A Fast Lesion Registration to Assist Coronary Heart Disease Diagnosis in CTA Images

  • Maria A. Zuluaga
  • Marcela Hernández Hoyos
  • Julio C. Dávila
  • Luis F. Uriza
  • Maciej Orkisz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)


This work introduces a 3D+t coronary registration strategy to minimize the navigation among cardiac phases during the process of ischaemic heart disease diagnosis. We propose to register image sub-volumes containing suspected arterial lesions at two cardiac phases, instead of performing a registration of the complete cardiac volume through the whole cardiac cycle. The method first automatically defines the extent of the sub-volumes to be aligned, then the registration is performed in two steps: a coarse rigid alignment and a deformable registration. Our method provides comparable results and is computationally less expensive than previous approaches that make use of larger spatial and temporal information.


Compute Tomography Angiography Leave Anterior Descend Right Coronary Artery Normalize Mutual Information Cardiac Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aylward, S.R., Jomier, J., Weeks, S., Bullit, E.: Registration and analysis of vascular images. Int. J. Comput. Vision 55(2), 123–138 (2003)CrossRefGoogle Scholar
  2. 2.
    Laguitton, S., Boldak, C., Bousse, A., Yang, C., Toumoulin, C.: Temporal tracking of coronaries in MSCTA by means of 3D geometrical moments. In: 28th IEEE EMBS Conf., New York City (USA), pp. 924–927 (2006)Google Scholar
  3. 3.
    Metz, C.T., Schaap, M., Klein, S., Neefjes, L.A., Capuano, E., Schultz, C., van Geuns, R.J., Serruys, P.W., van Walsum, T., Niessen, W.J.: Patient Specific 4D Coronary Models from ECG-gated CTA Data for Intra-operative Dynamic Alignment of CTA with X-ray Images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 369–376. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Zhang, D.P., Edwards, E., Mei, L., Rueckert, D.: 4D motion modeling of the coronary arteries from CT images for robotic assisted minimally invasive surgery. In: SPIE Med. Imaging, Orlando (USA), vol. 7259 (2009)Google Scholar
  5. 5.
    Zuluaga, M.A., Hush, D., Delgado Leyton, E.J.F., Hernández Hoyos, M., Orkisz, M.: Learning from Only Positive and Unlabeled Data to Detect Lesions in Vascular CT Images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 9–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Zuluaga, M.A., Magnin, I.E., Hernández Hoyos, M., Delgado Leyton, E.J.F., Lozano, F., Orkisz, M.: Automatic detection of abnormal vascular cross-sections based on Density Level Detection and Support Vector Machines. Int. J. Computer Assist. Radiol. Surg. 6(2), 163–174 (2011)CrossRefGoogle Scholar
  7. 7.
    Shechter, G., Resar, J.R., McVeigh, E.R.: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Trans. Med. Imaging 23(3), 369–375 (2006)CrossRefGoogle Scholar
  8. 8.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging. 18(8), 712–721 (1999)CrossRefGoogle Scholar
  9. 9.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  10. 10.
    Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22(1), 120–128 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maria A. Zuluaga
    • 1
    • 2
  • Marcela Hernández Hoyos
    • 2
  • Julio C. Dávila
    • 3
  • Luis F. Uriza
    • 4
  • Maciej Orkisz
    • 1
  1. 1.CREATIS, CNRS UMR5220, INSERM U1044, INSA-LyonUniversité de Lyon, Université Lyon 1France
  2. 2.Grupo Imagine, GIBUniversidad de los AndesBogotáColombia
  3. 3.DIMEClínica NeurocardiovascularCaliColombia
  4. 4.Hospital Universitario San Ignacio, Pontificia Universidad JaverianaBogotáColombia

Personalised recommendations