Analysis of the Abdominal Blood Oxygenation Signal of Premature Born Babies

  • Adam Szczepański
  • Marek Szczepański
  • Krzysztof Misztal
  • Ewa Kulikowska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)

Abstract

In this paper the analysis of the premature born babies abdominal blood oxidation values as a signal is conducted with the goal of acquisition of the basic parameters of the signal and establishing the reference parameters for further studies. The authors also study the behavior of the signal and determine the possibility of its prediction using ARIMA model. To authors’ knowledge no such analysis of the signal from preterm babies was conducted yet, both from medical and computer science points of view, so in this paper they also try to answer the question whether the signal may be reliable for further studies on the possible use of it in monitoring and diagnosis of the preterm babies.

Keywords

Oximetry abdominal blood oxygenation preterm babies statistical analysis ARIMA model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Denault, A., Deschamps, A., Murkin, J.: Cerebral Oximetry Monitoring in Anesthesiology. Anesthesiology Rounds 7(2) (2008)Google Scholar
  2. 2.
    O’Neill, C.: Cubic Spline Interpolation, http://www.golems.org/files/cubicspline.pdf (accessed May 28, 2002)
  3. 3.
    Cleveland, W.: Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association 74(368), 829–836 (1979)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Puka, L.: Kendall’s Tau. In: International Encyclopedia of Statistical Science, pp. 713–715. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Gooch, J.: Spearman Rank Correlation Coefficient. In: Encyclopedic Dictionary of Polymers, pp. 996–997. Springer, New York (2011)CrossRefGoogle Scholar
  6. 6.
    Weisburd, D., Britt, C.: Measuring Association for Interval-Level Data: Pearson’s Correlation Coefficient. In: Statistics in Criminal Justice, pp. 381–420. Springer US (2007)Google Scholar
  7. 7.
    del Barrio, E., Cuesta-Albertos, J., Matrn, C., Csrg, S., Cuadras, C., de Wet, T., Gin, E., Lockhart, R., Munk, A., Stute, W.: Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests. Test 9(1), 1–96 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Said, S., Dickey, D.: Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order. Biometrika 71(3), 599–607 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Phillips, P., Perron, P.: Testing for a Unit Root in Time Series Regression. Biometrika 75(2), 335–346 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chatfiel, C.: The Analysis of Time Series: An Introduction, 6th edn. Chapman and Hall (2003)Google Scholar
  11. 11.
    Shumway, R., Stoffer, D.: ARIMA Models. Time Series Analysis and Its Applications, pp. 83–171. Springer, New York (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adam Szczepański
    • 1
  • Marek Szczepański
    • 2
  • Krzysztof Misztal
    • 1
  • Ewa Kulikowska
    • 2
  1. 1.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland
  2. 2.Department of Neonatology and Intensive Neonatal Care UnitMedical University of BialystokBiałystokPoland

Personalised recommendations