Advertisement

View Independent Human Gait Recognition Using Markerless 3D Human Motion Capture

  • Tomasz Krzeszowski
  • Bogdan Kwolek
  • Agnieszka Michalczuk
  • Adam Świtoński
  • Henryk Josiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)

Abstract

We present an algorithm for view-independent human gait recognition. The human gait recognition is achieved using data obtained by our markerless 3D motion tracking algorithm. The tensorial gait data were reduced by multilinear principal component analysis and subsequently classified. The performance of the motion tracking algorithm was evaluated using ground-truth data from MoCap. The classification accuracy was determined using video sequences with walking performers. Experiments on multiview video sequences show the promising effectiveness of the proposed algorithm.

Keywords

Motion Capture Gait Cycle Motion Tracking Motion Capture System Gait Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodor, R., Drenner, A., Fehr, D., Masoud, O., Papanikolopoulos, N.: View-independent human motion classification using image-based reconstruction. Image Vision Comput. 27(8), 1194–1206 (2009)CrossRefGoogle Scholar
  2. 2.
    Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.N.: Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Processing Magazine 22, 78–90 (2005)CrossRefGoogle Scholar
  3. 3.
    Cunado, D., Nixon, M.S., Carter, J.N.: Using gait as a biometric, via phase-weighted magnitude spectra. In: Proc. of the First Int. Conf. on Audio and Video-Based Biometric Person Authentication, pp. 95–102 (1997)Google Scholar
  4. 4.
    Gu, J., Ding, X., Wang, S., Wu, Y.: Action and gait recognition from recovered 3-D human joints. IEEE Trans. Sys. Man Cyber. Part B 40(4), 1021–1033 (2010)CrossRefGoogle Scholar
  5. 5.
    Hofmann, M., Sural, S., Rigoll, G.: Gait recognition in the presence of occlusion: A new dataset and baseline algorithms. In: 19th Int. Conf. on Computer Graphics, Visualization and Computer Vision (WSCG) (2011)Google Scholar
  6. 6.
    Johansson, G.: Visual perception of biological motion and a model for its analysis. Perceptron & Psychophysics 14, 201–211 (1973)CrossRefGoogle Scholar
  7. 7.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)Google Scholar
  8. 8.
    Kozlowski, L.T., Cutting, J.E.: Recognizing the sex of a walker from a dynamic point-light display. Perception Psychophysics 21(6), 575–580 (1977)CrossRefGoogle Scholar
  9. 9.
    Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Swarm Intelligence Based Searching Schemes for Articulated 3D Body Motion Tracking. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp. 115–126. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Lee, L., Dalley, G., Tieu, K.: Learning pedestrian models for silhouette refinement. In: Proc. of the Ninth IEEE Int. Conf. on Computer Vision, pp. II:663–II:670 (2003)Google Scholar
  11. 11.
    Lu, H., Plataniotis, K., Venetsanopoulos, A.: MPCA: Multilinear principal component analysis of tensor objects. IEEE Trans. on Neural Networks 19(1), 18–39 (2008)CrossRefGoogle Scholar
  12. 12.
    Nixon, M.S., Carter, J.: Automatic recognition by gait. Proc. of the IEEE 94(11), 2013–2024 (2006)CrossRefGoogle Scholar
  13. 13.
    Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in xyt. In: Proc. of the Int. Conf. on Computer Vision and Pattern Rec., pp. 469–474 (1994)Google Scholar
  14. 14.
    Seely, R., Goffredo, M., Carter, J., Nixon, M.: View invariant gait recognition. In: Handbook of Remote Biometrics: for Surveillance and Security, pp. 61–82. Springer (2009)Google Scholar
  15. 15.
    Sigal, L., Balan, A., Black, M.: HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. Journal of Computer Vision 87, 4–27 (2010)CrossRefGoogle Scholar
  16. 16.
    Świtoński, A., Polański, A., Wojciechowski, K.: Human identification based on the reduced kinematic data of the gait. In: 7th Int. Symp. on Image and Signal Processing and Analysis, pp. 650–655 (2011)Google Scholar
  17. 17.
    Urtasun, R., Fua, P.: 3D tracking for gait characterization and recognition. In: Proc. of IEEE Int. Conf. on Automatic Face and Gesture Rec., pp. 17–22 (2004)Google Scholar
  18. 18.
    Yam, C., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Rec. 37(5), 1057–1072 (2004)CrossRefGoogle Scholar
  19. 19.
    Zhang, X., Hu, W., Wang, X., Kong, Y., Xie, N., Wang, H., Ling, H., Maybank, S.: A swarm intelligence based searching strategy for articulated 3D human body tracking. In: IEEE Workshop on 3D Information Extraction for Video Analysis and Mining in Conjuction with CVPR, pp. 45–50. IEEE (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Krzeszowski
    • 2
    • 1
  • Bogdan Kwolek
    • 2
    • 1
  • Agnieszka Michalczuk
    • 1
  • Adam Świtoński
    • 1
    • 3
  • Henryk Josiński
    • 1
    • 3
  1. 1.Polish-Japanese Institute of Information TechnologyWarszawaPoland
  2. 2.Rzeszow University of TechnologyRzeszówPoland
  3. 3.Silesian University of TechnologyGliwicePoland

Personalised recommendations