A Branch and Prune Algorithm for the Computation of Generalized Aspects of Parallel Robots

  • Stéphane Caro
  • Damien Chablat
  • Alexandre Goldsztejn
  • Daisuke Ishii
  • Christophe Jermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7514)

Abstract

Parallel robots enjoy enhanced mechanical characteristics that have to be contrasted with a more complicated design. In particular, they often have parallel singularities at some poses, and the robot may become uncontrollable, and could even be damaged, in such configurations. The computation of singularity free sets of reachable poses, called generalized aspects, is therefore a key issue in their design. A new methodology based on numerical constraint programming is proposed to compute a certified enclosure of such generalized aspects which fully automatically applies to arbitrary robot kinematic model.

Keywords

Numerical constraints parallel robots singularities aspects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amine, S., Tale-Masouleh, M., Caro, S., Wenger, P., Gosselin, C.: Singularity conditions of 3T1R parallel manipulators with identical limb structures. ASME Journal of Mechanisms and Robotics 4(1), 011011-1–011011-11 (2012)Google Scholar
  2. 2.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: Proc. of International Conference on Logic Programming, pp. 230–244 (1999)Google Scholar
  3. 3.
    Chablat, D.: Domaines d’unicité et parcourabilité pour les manipulateurs pleinement parallèles. Ph.D. thesis, École Centrale de Nantes (1998)Google Scholar
  4. 4.
    Chablat, D.: Joint space and workspace analysis of a two-dof closed-chain manipulator. In: Proc. of ROMANSY 18 Robot Design, Dynamics and Control, pp. 81–90. Springer (2010)Google Scholar
  5. 5.
    Chablat, D., Moroz, G., Wenger, P.: Uniqueness domains and non singular assembly mode changing trajectories. In: International Conference on Robotics and Automation, pp. 3946–3951 (2011)Google Scholar
  6. 6.
    Chablat, D., Wenger, P.: Working Modes and Aspects in Fully Parallel Manipulators. In: International Conference on Robotics and Automation, vol. 3, pp. 1964–1969 (1998)Google Scholar
  7. 7.
    Coste, M.: A simple proof that generic 3-RPR manipulators have two aspects. Tech. rep., Institut de Recherche Mathématique de Rennes (IRMAR) (2010)Google Scholar
  8. 8.
    Goldsztejn, A.: A Branch and Prune Algorithm for the Approximation of Non-Linear AE-Solution Sets. In: Proc. of ACM SAC 2006, pp. 1650–1654 (2006)Google Scholar
  9. 9.
    Goldsztejn, A.: Sensitivity analysis using a fixed point interval iteration. Tech. Rep. hal-00339377, CNRS-HAL (2008)Google Scholar
  10. 10.
    Goldsztejn, A., Goualard, F.: Box Consistency through Adaptive Shaving. In: Proc. of ACM SAC 2010, pp. 2049–2054 (2010)Google Scholar
  11. 11.
    Goldsztejn, A., Jaulin, L.: Inner approximation of the range of vector-valued functions. Reliable Computing 14, 1–23 (2010)MathSciNetGoogle Scholar
  12. 12.
    Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques. ACM TOMS 32(1), 138–156 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)CrossRefGoogle Scholar
  14. 14.
    Kong, X., Gosselin, C.: Type Synthesis of Parallel Mechanisms. Springer (2007)Google Scholar
  15. 15.
    Lhomme, O.: Consistency Techniques for Numeric CSPs. In: Proc. of IJCAI 1993, pp. 232–238 (1993)Google Scholar
  16. 16.
    Merlet, J.P.: Parallel robots. Kluwer, Dordrecht (2000)CrossRefMATHGoogle Scholar
  17. 17.
    Merlet, J.P.: A formal-numerical approach for robust in-workspace singularity detection. IEEE Trans. on Robotics 23(3), 393–402 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Montanari, U.: Networks of constraints: Fundamentals properties and applications to picture processing. Information Science 7(2), 95–132 (1974)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Moore, R.: Interval Analysis. Prentice-Hall (1966)Google Scholar
  20. 20.
    Moroz, G., Rouiller, F., Chablat, D., Wenger, P.: On the determination of cusp points of 3-RPR parallel manipulators. Mechanism and Machine Theory 45(11), 1555–1567 (2010)CrossRefMATHGoogle Scholar
  21. 21.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press (1990)Google Scholar
  22. 22.
    Van Hentenryck, P., Mcallester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM Journal on Numerical Analysis 34, 797–827 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stéphane Caro
    • 1
  • Damien Chablat
    • 1
  • Alexandre Goldsztejn
    • 2
  • Daisuke Ishii
    • 3
  • Christophe Jermann
    • 4
  1. 1.IRCCyNNantesFrance
  2. 2.CNRS, LINA (UMR-6241)NantesFrance
  3. 3.National Institute of Informatics, JSPSTokyoJapan
  4. 4.LINA (UMR-6241)University of NantesNantesFrance

Personalised recommendations