Resource Constrained Shortest Paths with a Super Additive Objective Function

  • Stefano Gualandi
  • Federico Malucelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7514)

Abstract

We present an exact solution approach to the constrained shortest path problem with a super additive objective function. This problem generalizes the resource constrained shortest path problem by considering a cost function c(·) such that, given two consecutive paths P1 and P2, c(P1 ∪ P2) ≥ c(P1) + c(P2). Since super additivity invalidates the Bellman optimality conditions, known resource constrained shortest path algorithms must be revisited. Our exact solution algorithm is based on a two stage approach: first, the size of the input graph is reduced as much as possible using resource, cost, and Lagrangian reduced-cost filtering algorithms that account for the super additive cost function. Then, since the Lagrangian relaxation provides a tight lower bound, the optimal solution is computed using a near-shortest path enumerative algorithm that exploits the lower bound. The behavior of the different filtering procedures are compared, in terms of computation time, reduction of the input graph, and solution quality, considering two classes of graphs deriving from real applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aneja, Y.P., Aggarwal, V., Nair, K.P.K.: Shortest chain subject to side constraints. Networks 13(2), 295–302 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Applegate, D., Cook, W., Dash, S., Mevenkamp, M.: QSopt linear programming solver, http://www.isye.gatech.edu/~wcook/qsopt/ (last visited, April 2012)
  3. 3.
    Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest path problem. Networks 19(4), 379–394 (1989)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Carlyle, W.M., Royset, J.O., Wood, R.K.: Lagrangian relaxation and enumeration for solving constrained shortest-path problems. Networks 52(4), 256–270 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problema. Networks 42(3), 135–153 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gabriel, S.A., Bernstein, D.: Nonadditive shortest paths: subproblems in multi-agent competitive network models. Computational & Mathematical Organization Theory 6(1), 29–45 (2000)CrossRefGoogle Scholar
  7. 7.
    Gellermann, T., Sellmann, M., Wright, R.: Shorter Path Constraints for the Resource Constrained Shortest Path Problem. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 201–216. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks 10(4), 293–309 (1980)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Irnich, S., Desaulniers, G.: Shortest Path Problems with Resource Constraints. In: Desaulniers, G., Desrosiers, J., Solomon, M. (eds.) Column Generation, pp. 33–65. Springer (2005)Google Scholar
  10. 10.
    Jepsen, M.K., Petersen, B., Spoorendonk, S.: A branch-and-cut algorithm for the elementary shortest path problem with a capacity constraint. Technical Report 08/01, Dept. of Computer Science. University of Copenhagen, Copenhagen (2008)Google Scholar
  11. 11.
    Kuipers, F., Korkmaz, T., Krunz, M., Van Mieghem, P.: Performance evaluation of constraint-based path selection algorithms. IEEE Network 18(5), 16–23 (2004)CrossRefGoogle Scholar
  12. 12.
    Kuipers, F., Van Mieghem, P., Korkmaz, T., Krunz, M.: An overview of constraint-based path selection algorithms for qos routing. IEEE Communications Magazine 40(12), 50–55 (2002)CrossRefGoogle Scholar
  13. 13.
    Lefebvre, M.P., Puget, J.-F., Vilím, P.: Route Finder: Efficiently Finding k Shortest Paths Using Constraint Programming. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 42–53. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Matthew Carlyle, W., Kevin Wood, R.: Near-shortest and k-shortest simple paths. Networks 46(2), 98–109 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mehlhorn, K., Ziegelmann, M.: Resource Constrained Shortest Paths. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 326–337. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Muhandiramge, R., Boland, N.: Simultaneous solution of lagrangean dual problems interleaved with preprocessing for the weight constrained shortest path problem. Networks 53(4), 358–381 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pham, Q.D., Deville, Y., Van Hentenryck, P.: Constraint-Based Local Search for Constrained Optimum Paths Problems. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 267–281. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Quesada, L., Van Roy, P., Deville, Y., Collet, R.: Using Dominators for Solving Constrained Path Problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 73–87. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Reinhardt, L.B., Pisinger, D.: Multi-objective and multi-constrained non-additive shortest path problems. Computers & Operations Research 38(3), 605–616 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sellmann, M.: Reduction Techniques in Constraint Programming and Combinatorial Optimization. PhD thesis, University of Paderborn (2003)Google Scholar
  21. 21.
    Sellmann, M.: Theoretical Foundations of CP-Based Lagrangian Relaxation. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 634–647. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Sellmann, M., Gellermann, T., Wright, R.: Cost-based filtering for shorter path constraints. Constraints 12, 207–238 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Tsaggouris, G., Zaroliagis, C.: Non-additive Shortest Paths. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 822–834. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Zhu, X., Wilhelm, W.E.: A three-stage approach for the resource-constrained shortest path as a sub-problem in column generation. Computers & Operations Research 39(2), 164–178 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ziegelmann, M.: Constrained shortest paths and related problems. PhD thesis, Universität des Saarlandes, Germany (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefano Gualandi
    • 1
  • Federico Malucelli
    • 2
  1. 1.Dipartimento di MatematicaUniversità di PaviaItaly
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItaly

Personalised recommendations