Advertisement

Optimisation Modelling for Software Developers

  • Kathryn Francis
  • Sebastian Brand
  • Peter J. Stuckey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7514)

Abstract

Software developers are an ideal channel for the distribution of Constraint Programming (CP) technology. Unfortunately, including even basic optimisation functionality in an application currently requires the use of an entirely separate paradigm with which most software developers are not familiar.

We suggest an alternative interface to CP designed to overcome this barrier, and describe a prototype implementation for Java. The interface allows an optimisation problem to be defined in terms of procedures rather than decision variables and constraints. Optimisation is seamlessly integrated into a wider application through automatic conversion between this definition and a conventional model solved by an external solver.

This work is inspired by the language CoJava, in which a simulation is automatically translated into an optimal simulation. We extend this idea to support a general interface where optimisation is triggered on-demand. Our implementation also supports much more advanced code, such as object variables, variable-sized collections, and complex decisions.

Keywords

Software Developer Constraint Programming Boolean Expression Variable Collection Task Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Nory, M., Brodsky, A.: Unifying simulation and optimization of strategic sourcing and transportation. In: Winter Simulation Conference (WSC), pp. 2616–2624 (2008)Google Scholar
  2. 2.
    Brodsky, A., Al-Nory, M., Nash, H.: Service composition language to unify simulation and optimization of supply chains. In: Hawaii International Conference on System Sciences, p. 74. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  3. 3.
    Brodsky, A., Luo, J., Nash, H.: CoReJava: learning functions expressed as Object-Oriented programs. In: Machine Learning and Applications, pp. 368–375. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  4. 4.
    Brodsky, A., Nash, H.: CoJava: a unified language for simulation and optimization. In: Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA), pp. 194–195. ACM, New York (2005)Google Scholar
  5. 5.
    Brodsky, A., Nash, H.: CoJava: Optimization Modeling by Nondeterministic Simulation. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 91–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Carson, Y., Maria, A.: Simulation optimization: methods and applications. In: Winter Simulation Conference (WSC), pp. 118–126. IEEE Computer Society, Atlanta (1997)Google Scholar
  7. 7.
    Fu, M.C., Glover, F.W., April, J.: Simulation optimization: a review, new developments, and applications. In: Winter Simulation Conference, WSC (2005)Google Scholar
  8. 8.
    Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint Programming and Combinatorial Optimisation in Numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Jussien, N., Rochart, G., Lorca, X.: The CHOCO constraint programming solver. In: CPAIOR 2008 Workshop on OpenSource Software for Integer and Constraint Programming OSSICP 2008 (2008)Google Scholar
  10. 10.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Schulte, C., Lagerkvist, M., Tack, G.: GECODE – an open, free, efficient constraint solving toolkit, http://www.gecode.org/
  12. 12.
    Van Hentenryck, P., Michel, L., Perron, L., Régin, J.-C.: Constraint Programming in OPL. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 98–116. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kathryn Francis
    • 1
  • Sebastian Brand
    • 1
  • Peter J. Stuckey
    • 1
  1. 1.National ICT Australia, Victoria Research LaboratoryThe University of MelbourneVictoriaAustralia

Personalised recommendations