Weibull-Based Benchmarks for Bin Packing

  • Ignacio Castiñeiras
  • Milan De Cauwer
  • Barry O’Sullivan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7514)

Abstract

Bin packing is a ubiquitous problem that arises in many practical applications. The motivation for the work presented here comes from the domain of data centre optimisation. In this paper we present a parameterisable benchmark generator for bin packing instances based on the well-known Weibull distribution. Using the shape and scale parameters of this distribution we can generate benchmarks that contain a variety of item size distributions. We show that real-world bin packing benchmarks can be modelled extremely well using our approach. We also study both systematic and heuristic bin packing methods under a variety of Weibull settings. We observe that for all bin capacities, the number of bins required in an optimal solution increases as the Weibull shape parameter increases. However, for each bin capacity, there is a range of Weibull shape settings, corresponding to different item size distributions, for which bin packing is hard for a CP-based method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvim, A.C.F., Ribeiro, C.C., Glover, F., Aloise, D.J.: A hybrid improvement heuristic for the one-dimensional bin packing problem. Journal of Heuristics 10(2), 205–229 (2004)CrossRefGoogle Scholar
  2. 2.
    Boost: free peer-reviewed portable C++ source libraries. Version 1.47.0, http://www.boost.org/
  3. 3.
    Cambazard, H., O’Sullivan, B.: Propagating the Bin Packing Constraint Using Linear Programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 129–136. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Carlsson, M., Beldiceanu, N., Martin, J.: A geometric constraint over k-dimensional objects and shapes subject to business rules. In: Stuckey (ed.) [31], pp. 220–234Google Scholar
  5. 5.
    de Carvalho, J.V.: Exact solution of cutting stock problems using column generation and branch-and-bound. International Transactions in Operational Research 5(1), 35–44 (1998)CrossRefMATHGoogle Scholar
  6. 6.
    Dupuis, J., Schaus, P., Deville, Y.: Consistency check for the bin packing constraint revisited. In: Lodi, et al. (eds.) [15], pp. 117–122Google Scholar
  7. 7.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2(1), 5–30 (1996)CrossRefGoogle Scholar
  8. 8.
    Gecode: generic constraint development environment. Version 3.7.0, http://www.gecode.org/
  9. 9.
    Gent, I.P.: Heuristic solution of open bin packing problems. Journal of Heuristics 3(4), 299–304 (1998)CrossRefMATHGoogle Scholar
  10. 10.
    Gent, I.P., Walsh, T.: From approximate to optimal solutions: constructing pruning and propagation rules. In: International Joint Conference on Artifical Intelligence, pp. 1396–1401 (1997)Google Scholar
  11. 11.
    Grandcolas, S., Pinto, C.: A SAT encoding for multi-dimensional packing problems. In: Lodi, et al. (eds.) [15], pp. 141–146Google Scholar
  12. 12.
    Hermenier, F., Demassey, S., Lorca, X.: Bin Repacking Scheduling in Virtualized Datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Korf, R.E.: An improved algorithm for optimal bin packing. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 1252–1258 (2003)Google Scholar
  14. 14.
    Labbé, M., Laporte, G., Martello, S.: Upper bounds and algorithms for the maximum cardinality bin packing problem. European Journal of Operational Research 149(3), 490–498 (2003)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Lodi, A., Milano, M., Toth, P. (eds.): CPAIOR 2010. LNCS, vol. 6140. Springer, Heidelberg (2010)MATHGoogle Scholar
  16. 16.
    Steenberger, M.R.: Maximum likelihood programming in R, http://www.unc.edu/~monogan/computing/r/MLE_in_R.pdf
  17. 17.
    Denis, J.-B., Delignette-Muller, M.L., Pouillot, R., Dutang, C.: Use of the package fitdistrplus to specify a distribution from non-censored or censored data (April 2011)Google Scholar
  18. 18.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, Inc. (1990)Google Scholar
  19. 19.
    Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Appl. Math. 28, 59–70 (1990)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Qu, R., Burke, E., McCollum, B., Merlot, L.T., Lee, S.Y.: A survey of search methodologies and automated approaches for examination timetabling (2006)Google Scholar
  21. 21.
    Régin, J.-C., Rezgui, M.: Discussion about constraint programming bin packing models. In: Proceedings of the AIDC Workshop (2011)Google Scholar
  22. 22.
    Rici, V.: Fitting distribution with R (2005)Google Scholar
  23. 23.
    Schaus, P.: Solving Balancing and Bin-Packing Problems with Constraint Programming. PhD thesis, Université Catholique de Louvain-la-Neuve (2009)Google Scholar
  24. 24.
    Scholl, A., Klein, R., Jürgens, C.: Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Computers & Operations Research 24(7), 627–645 (1997)CrossRefMATHGoogle Scholar
  25. 25.
    Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and Programming with Gecode (2012), http://www.gecode.org/doc-latest/MPG.pdf
  26. 26.
    Schwerin, P., Wäscher, G.: The bin-packing problem: A problem generator and some numerical experiments with FFD packing and MTP. International Transactions in Operational Research 4(5-6), 377–389 (1997)CrossRefMATHGoogle Scholar
  27. 27.
    Schwerin, P., Wäscher, G.: A New Lower Bound for the Bin-Packing Problem and its Integration Into MTP. Martin-Luther-Univ. (1998)Google Scholar
  28. 28.
    Shaw, P.: A constraint for bin packing. In: Wallace (ed.) [34], pp. 648–662Google Scholar
  29. 29.
    Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey (ed.) [31], pp. 52–66Google Scholar
  30. 30.
    Simonis, H., O’Sullivan, B.: Almost Square Packing. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 196–209. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Stuckey, P.J. (ed.): CP 2008. LNCS, vol. 5202. Springer, Heidelberg (2008)MATHGoogle Scholar
  32. 32.
    The R project for statistical computing. Version 1.47.0, http://www.r-project.org/
  33. 33.
    Vidotto, A.: Online constraint solving and rectangle packing. In: Wallace (ed.) [34], p. 807Google Scholar
  34. 34.
    Wallace, M. (ed.): CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)MATHGoogle Scholar
  35. 35.
    Wäscher, G., Gau, T.: Heuristics for the integer one-dimensional cutting stock problem: A computational study. OR Spectrum 18(3), 131–144 (1996)CrossRefMATHGoogle Scholar
  36. 36.
    Weibull, W.: A statistical distribution function of wide applicability. Journal of Appl. Mech.-Transactions 18(3), 293–297 (1951)MATHGoogle Scholar
  37. 37.
    Wessa, P.: Free Statistics Software, Office for Research Development and Education, version 1.1.23-r7 (2011), http://www.wessa.net/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ignacio Castiñeiras
    • 1
  • Milan De Cauwer
    • 2
  • Barry O’Sullivan
    • 3
  1. 1.Dpto. de Sistemas Informáticos y ComputaciónUniversidad Complutense de MadridSpain
  2. 2.Département InformatiqueUniversité de NantesFrance
  3. 3.Cork Constraint Computation CentreUniversity College CorkIreland

Personalised recommendations