Which Reorientation Framework for the Atlas-Based Comparison of Motion from Cardiac Image Sequences?

  • Nicolas Duchateau
  • Mathieu De Craene
  • Xavier Pennec
  • Beatriz Merino
  • Marta Sitges
  • Bart Bijnens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7570)


The present paper builds upon recent advances in the spatiotemporal alignment of cardiac sequences to construct a statistical atlas of normal motion. Comparing cardiac sequences requires considering both the temporal component (changes along the sequences) and the inter-subject one. The objective here is to understand the changes in the comparison of myocardial velocities depending on (1) the chosen reorientation action (finite strain [local rotation only], local rotation and isotropic scaling, or full Jacobian matrix using the push-forward) and (2) the chosen system of coordinates (Lagrangian, Eulerian, or if a compromise between both [e.g. hybrid-Eulerian] is possible). Myocardial velocities are estimated locally using speckle tracking on echocardiographic (US) sequences, then aligned to a reference timescale, and finally reoriented to the anatomical reference according to the chosen reorientation framework. The methodology was applied to 2D US sequences in a 4-chamber view from 71 healthy volunteers. Experiments highlight the limitations of the hybrid-Eulerian scheme, showing that the intra-subject transformation should be taken into account, and discuss the options to perform the inter-subject one.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, D., Landesberg, A., Konyukhov, E., Lysyansky, P., Lichtenstein, O., Smirin, N., Friedman, Z.: On changing coordinate systems for longitudinal tensor-based morphometry. In: Proc. IEEE Computers in Cardiology, pp. 337–340 (2004)Google Scholar
  2. 2.
    Behar, V., Adam, D., Lysyansky, P., Friedman, Z.: The combined effect of nonlinear filtration and window size on the accuracy of tissue displacement estimation using detected echo signals. Ultrasonics 41(9), 743–753 (2004)CrossRefGoogle Scholar
  3. 3.
    Bijnens, B., Cikes, M., Butakoff, C., Sitges, M., Crispi, F.: Myocardial motion and deformation: What does it tell us and how does it relate to function? Fetal Diagnosis and Therapy (in press, 2012)Google Scholar
  4. 4.
    Bossa, M.N., Zacur, E., Olmos, S.: On changing coordinate systems for longitudinal tensor-based morphometry. In: Proc. Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, MICCAI 2010 Workshop (2010)Google Scholar
  5. 5.
    Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. International Journal of Computer Vision 90, 255–266 (2010)CrossRefGoogle Scholar
  6. 6.
    De Craene, M., Piella, G.: An implementation of TDFFD and LDFFD algorithms. Insight Journal 63 (2012), http://hdl.handle.net/10380/3345
  7. 7.
    De Craene, M., Piella, G., Camara, O., Duchateau, N., Silva, E., Doltra, A., D’hooge, J., Brugada, J., Sitges, M., Frangi, A.F.: Spatiotemporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3D echocardiography. Medical Image Analysis 16(2), 427–450 (2012)CrossRefGoogle Scholar
  8. 8.
    Duchateau, N., De Craene, M., Piella, G., Frangi, A.F.: Constrained manifold learning for the characterization of pathological deviations from normality. Medical Image Analysis (in press, 2012)Google Scholar
  9. 9.
    Duchateau, N., De Craene, M., Piella, G., Silva, E., Doltra, A., Sitges, M., Bijnens, B.H., Frangi, A.F.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Medical Image Analysis 15, 316–328 (2011)CrossRefGoogle Scholar
  10. 10.
    Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 297–304. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Fornwalt, B.K.: The dyssynchrony in predicting response to cardiac resynchronization therapy: A call for change. Journal of the American Society of Echocardiography 24, 180–184 (2011)CrossRefGoogle Scholar
  12. 12.
    Glaunes, J.A.: Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. Phd thesis, Université Paris 13 (2005)Google Scholar
  13. 13.
    Hart, G., Shi, Y., Zhu, H., Sanchez, M., Styner, M., Niethamme, M.: DTI longitudinal atlas construction as an average of growth models. In: Proc. Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, MICCAI 2010 Workshop (2010)Google Scholar
  14. 14.
    Hoogendoorn, C., Whitmarsh, T., Duchateau, N., Sukno, F.M., De Craene, M., Frangi, A.F.: A groupwise mutual information metric for cost efficient selection of a suitable reference in cardiac computational atlas construction. In: Proc. SPIE International Conference on Medical Imaging, p. 76231R (2010)Google Scholar
  15. 15.
    Khan, A.R., Trouvé, A., Beg, M.F.: Cross-sectional analysis of anatomical shape change over time via statistics on 4D within-subject flows. In: Proc. Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, MICCAI 2010 Workshop (2010)Google Scholar
  16. 16.
    Langs, G., Kasprian, G., Dittrich, E., Bittner, M., Brugger, P.C., Prayer, D.: Group-wise spatio-temporal registration and segmentation of fetal cortical surface development. In: Proc. Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, MICCAI 2010 Workshop (2010)Google Scholar
  17. 17.
    Leitman, M., Lysyansky, P., Sidenko, S., Shir, V., Peleg, E., Binenbaum, M., Kaluski, E., Krakover, R., Vered, Z.: Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. Journal of the American Society of Echocardiography 17, 1021–1029 (2004)CrossRefGoogle Scholar
  18. 18.
    Lorenzi, M., Ayache, N., Pennec, X.: Schild’s Ladder for the Parallel Transport of Deformations in Time Series of Images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 463–474. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Lorenzi, M., Pennec, X.: Geodesics, parallel transport and one-parameter subgroups for diffeomorphic image registration. In: Proc. Mathematical Foundations of Computational Anatomy, MICCAI 2011 Workshop, pp. 64–74 (2011)Google Scholar
  20. 20.
    Marwick, T.H., Yu, C.-M., Sun, J.P.: Myocardial Imaging: Tissue Doppler and Speckle Tracking. Wiley-Blackwell (2007)Google Scholar
  21. 21.
    Miller, M.I., Qiu, A.: The emerging discipline of computational functional anatomy. Neuroimage 45, S16–S39 (2009)CrossRefGoogle Scholar
  22. 22.
    Moravi, V., Lang, R.M., Badano, L.P., Belohlavek, M., Cardim, N.M., Derumeaux, G., Galderisi, M., Marwick, T., Nagueh, S.F., Sengupta, P.P., Sicari, R., Smiseth, O.A., Smulevitz, B., Takeuchi, M., Thomas, J.D., Vannan, M., Voigt, J.-U., Zamorano, J.L.: Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics. Journal of the American Society of Echocardiography 24, 277–313 (2011)CrossRefGoogle Scholar
  23. 23.
    Pennec, X., Lorenzi, M.: Which parallel transport for the statistical analysis of longitudinal deformations? In: Proc. Colloque GRETSI (2011)Google Scholar
  24. 24.
    Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Spatio-temporal free-form registration of cardiac MR image sequences. Medical Image Analysis 9, 441–456 (2005)CrossRefGoogle Scholar
  25. 25.
    Peyrat, J.-M., Delingette, H., Sermesant, M., Xu, C., Ayache, N.: Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic demons. IEEE Transactions on Medical Imaging 29, 1351–1368 (2010)CrossRefGoogle Scholar
  26. 26.
    Qiu, A., Albert, M., Younes, L., Miller, M.I.: Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes. Neuroimage 45, S51–S60 (2009)CrossRefGoogle Scholar
  27. 27.
    Qiu, A., Younes, L., Miller, M.I., Csernansky, J.G.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer’s type. NeuroImage 40, 68–76 (2008)CrossRefGoogle Scholar
  28. 28.
    Toga, A.W., Thompson, P.M., Mori, S., Amunts, K., Zilles, K.: Towards multimodal atlases of the human brain. Nature Reviews Neuroscience 7, 952–966 (2006)CrossRefGoogle Scholar
  29. 29.
    Trouvé, A., Vialard, F.X.: Shape splines and stochastic shape evolutions: A second order point of view. Quarterly of Applied Mathematics 70, 219–251 (2012)MATHCrossRefGoogle Scholar
  30. 30.
    Tu, L.W.: An Introduction to Manifolds, ch. 14. Springer (2007)Google Scholar
  31. 31.
    Vialard, F.X., Trouvé, A.: A second-order model for time-dependent data interpolation: Splines on shape spaces. In: Proc. Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, MICCAI 2010 Workshop (2010)Google Scholar
  32. 32.
    Young, A.A., Frangi, A.F.: Computational cardiac atlases: from patient to population and back. Experimental Physiology 94, 578–596 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicolas Duchateau
    • 1
  • Mathieu De Craene
    • 2
  • Xavier Pennec
    • 3
  • Beatriz Merino
    • 1
  • Marta Sitges
    • 1
  • Bart Bijnens
    • 4
  1. 1.Hospital Clínic - IDIBAPS - Universitat de BarcelonaSpain
  2. 2.Philips ResearchMedisysFrance
  3. 3.Asclepios Team ProjectINRIA Sophia Antipolis MéditerranéeFrance
  4. 4.Universitat Pompeu Fabra - ICREABarcelonaSpain

Personalised recommendations