Retrieving Information from Subordination

  • Jean Bertoin
  • Marc Yor
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 33)


We recall some instances of the recovery problem of a signal process hidden in an observation process. Our main focus is then to show that if \((X_{s},\,s\,\geq \,0)\) is a right-continuous process, \(Y _{t} = \int \limits _{0}^{t}X_{s}\mathrm{d}s\) its integral process and \(\tau = (\tau _{u},u \geq 0)\) a subordinator, then the time-changed process \((Y _{\tau _{u}},\,u\,\geq \,0)\) allows to retrieve the information about \((X_{\tau _{v}},\,v\,\geq \,0)\) when τ is stable, but not when τ is a gamma subordinator. This question has been motivated by a striking identity in law involving the Bessel clock taken at an independent inverse Gaussian variable.


Recovery problem Subordination Bougerol’s identity 


  1. 1.
    Alili, L., Dufresne, D., Yor, M.: Sur l’identité de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift. In: Yor, M. (ed.) Exponential Functional and Principal Values Related to Brownian Motion, pp. 3–14. Bibl. Rev. Mat. Iberoamericana, Madrid (1997)Google Scholar
  2. 2.
    Bougerol, Ph.: Exemples de théorèmes locaux sur les groupes résolubles. Ann. Inst. H. Poincaré Sect. B 19, 369–391 (1983)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dufresne, D., Yor, M.: A two-dimensional extension of Bougerol’s identity in law for the exponential functional of Brownian motion: the story so far. UnpublishedGoogle Scholar
  4. 4.
    Geman, H., Madan, D., Yor, M.: Time changes hidden in Brownian subordination. Prépublication 591, Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Paris (2000)Google Scholar
  5. 5.
    Geman, H., Madan, D., Yor, M.: Time changes for Lévy processes. Math. Financ. 11, 79–96 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kunita, H.: Asymptotic behavior of the nonlinear filtering errors of Markov processes. J. Multivar. Anal. 1, 365–393 (1971)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sato, K.: Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)Google Scholar
  8. 8.
    von Renesse, M.-K., Yor, M., Zambotti, L.: Quasi-invariance properties of a class of subordinators. Stoch. Process. Appl. 188, 2038–2057 (2008)CrossRefGoogle Scholar
  9. 9.
    Yor, M.: Some aspects of Brownian motion. Part I. Some special functionals. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1992)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Probabilités et Modèles AléatoiresUPMCParis cedex 05France
  2. 2.Institut Universitaire de France and Laboratoire de Probabilités et Modèles AléatoiresUPMCParis cedex 05France

Personalised recommendations