Advertisement

Communication-Efficient Self-stabilization in Wireless Networks

  • Tomoya Takimoto
  • Fukuhito Ooshita
  • Hirotsugu Kakugawa
  • Toshimitsu Masuzawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7596)

Abstract

A self-stabilizing protocol is guaranteed to eventually reach a safe (or legitimate) configuration even when started from an arbitrary configuration. Most of self-stabilizing protocols require each process to keep communicating with all of its neighbors forever even after reaching a safe configuration. Such permanent communication impairs efficiency, but is necessary in nature of self-stabilization.

The concept of communication-efficiency was introduced to reduce communication after reaching a safe configuration. The previous concept targets the point-to-point communication model, and is not appropriate to the wireless network model where a process can locally broadcast a message to its neighbors all at once.

In this paper, we refine the concept of the communication-efficiency for the wireless network model, and investigate its possibility in self-stabilization for some fundamental problems; the minimal (connected) dominating set problem, the maximal independent set problem, and the spanning tree construction problem.

Keywords

Wireless Network Convergence Time Span Tree Problem Process Pair Line Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dolev, S.: Self-stabilization. The MIT press (2000)Google Scholar
  2. 2.
    Devismes, S., Masuzawa, T., Tixeuil, S.: Communication efficiency in self-stabilizing silent protocols. In: Proc. of IEEE ICDCS, pp. 474–481 (2009)Google Scholar
  3. 3.
    Masuzawa, T., Izumi, T., Katayama, Y., Wada, K.: Brief Announcement: Communication-Efficient Self-stabilizing Protocols for Spanning-Tree Construction. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 219–224. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Masuzawa, T.: Silence Is Golden: Self-stabilizing Protocols Communication-Efficient after Convergence. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 1–3. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable Leader Election. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega with weak reliability and synchrony assumptions. In: Proc. of PODC, pp. 306–314 (2003)Google Scholar
  7. 7.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient leader election and consensus with limited link synchrony. In: Proc. of PODC, pp. 328–337 (2004)Google Scholar
  8. 8.
    Biely, M., Widder, J.: Optimal message-driven implementations of omega with mute processes. ACM TAAS 4(1), 4:1–4:22 (2009)CrossRefGoogle Scholar
  9. 9.
    Larrea, M., Fernández, A., Arévalo, S.: Optimal implementation of the weakest failure detector for solving consensus. In: Proc. of SRDS, pp. 52–59 (2000)Google Scholar
  10. 10.
    Dolev, S., Schiller, E.: Communication adaptive self-stabilizing group membership service. IEEE TPDS 14(7), 709–720 (2003)Google Scholar
  11. 11.
    Kutten, S., Zinenko, D.: Low Communication Self-stabilization through Randomization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 465–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algorithm for the maximal independent set problem. In: Proc. of PDCAT, pp. 70–74 (2002)Google Scholar
  13. 13.
    Arora, A., Gouda, M.G.: Distributed Reset. IEEE Trans. Comp. 43(9), 1026–1038 (1994)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomoya Takimoto
    • 1
  • Fukuhito Ooshita
    • 1
  • Hirotsugu Kakugawa
    • 1
  • Toshimitsu Masuzawa
    • 1
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityJapan

Personalised recommendations