Velocity Selection for High-Speed UGVs in Rough Unknown Terrains Using Force Prediction

  • Graeme N. Wilson
  • Alejandro Ramirez-Serrano
  • Mahmoud Mustafa
  • Krispin A. Davies
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7507)


Enabling high speed navigation of Unmanned Ground Vehicles (UGVs) in unknown rough terrain where limited or no information is available in advance requires the assessment of terrain in front of the UGV. Attempts have been made to predict the forces the terrain exerts on the UGV for the purpose of determining the maximum allowable velocity for a given terrain. However, current methods produce overly aggressive velocity profiles which could damage the UGV. This paper presents three novel safer methods of force prediction that produce effective velocity profiles. Two models, Instantaneous Elevation Change Model (IECM) and Sinusoidal Base Excitation Model: using Excitation Force (SBEM:EF), predict the forces exerted by the terrain on the vehicle at the ground contact point, while another method, Sinusoidal Base Excitation Model: using Transmitted Force (SBEM:TF), predicts the forces transmitted to the vehicle frame by the suspension.


Unmanned Ground Vehicles High Speed Terrain Traversal Terrain Assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DuPont, E.M., Moore, C.A., Collins, E.G., Coyle, E.: Frequency response method for terrain classification in autonomous ground vehicles. Auton. Robot. 24(4), 337–347 (2008)CrossRefGoogle Scholar
  2. 2.
    Sadhukhan, D.: Autonomous ground vehicle terrain classification using internal sensors. MIT Press (2004)Google Scholar
  3. 3.
    Ward, C.C., Iagnemma, K.: Speed-independent vibration-based terrain classification for passenger vehicles. Veh. Sys. Dyn. 47(9), 1095–1113 (2009)CrossRefGoogle Scholar
  4. 4.
    Collins, E.G., Coyle, E.J.: Vibration-based terrain classification using surface profile input frequency responses. In: IEEE Int. Conf. on Robot. and Autom., pp. 3276–3283 (2008)Google Scholar
  5. 5.
    Mou, W., Kleiner, A.: Online Learning Terrain Classification for Adaptive Velocity Control. In: Int. Work. on Safety Security and Rescue Robotics, pp. 1–7 (2010)Google Scholar
  6. 6.
    Weiss, C., Tamimi, H., Zell, A.: A combination of vision- and vibration-based terrain classification. In: IEEE/RSJ Int.Conf. on Intell. Robots and Sys., pp. 2204–2209 (2008)Google Scholar
  7. 7.
    Stavens, D., Thrun, S.: A self-supervised terrain roughness estimator for off-road autonomous driving. In: Proc. of Conf. on Uncertainty in AI, UAI (2006)Google Scholar
  8. 8.
    Brooks, C.A.: Learning to Visually Predict Terrain Properties for Planetary Rovers. Massachusetts Institute of Technology (2009)Google Scholar
  9. 9.
    Chilian, A., Hirschmuller, H.: Stereo camera based navigation of mobile robots on rough terrain. In: IEEE/RSJ Int.Conf. on Intell. Robots and Sys., pp. 4571–4576 (2009)Google Scholar
  10. 10.
    Jin, G.-G., Lee, Y.-H., Lee, H.-S., So, M.-O.: Traversability analysis for navigation of unmanned robots. In: SICE Annu. Conf., pp. 1806–1811 (August 2008)Google Scholar
  11. 11.
    El-Kabbany, A., Ramirez-Serrano, A.: Terrain Roughness Assessment for High Speed Ugv Navigation in Unknown Heterogeneous Terrains. Int. J. of Inf. Acq. 7(2), 165 (2010)CrossRefGoogle Scholar
  12. 12.
    Inman, D.J.: Engineering Vibration. In: Engineering Vibration, 3rd edn., pp. 130–139. Pearson Education Inc. (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Graeme N. Wilson
    • 1
  • Alejandro Ramirez-Serrano
    • 1
  • Mahmoud Mustafa
    • 1
  • Krispin A. Davies
    • 1
  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations