On the Relationship between Reachability Problems in Timed and Counter Automata

  • Christoph Haase
  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7550)

Abstract

This paper establishes a relationship between reachability problems in timed automata and space-bounded counter automata. We show that reachability in timed automata with three or more clocks is naturally logarithmic-space interreducible with reachability in space-bounded counter automata with two counters. We moreover show the logarithmic-space equivalence of reachability in two-clock timed automata and space-bounded one-counter automata. This last reduction provides new insight into two problems whose precise computational complexity have independently been identified as open.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comp. Sci. 126, 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proc. STOC, pp. 592–601. ACM Press (1993)Google Scholar
  3. 3.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Form. Method. Syst. Des. 1(4), 385–415 (1992)MATHCrossRefGoogle Scholar
  5. 5.
    Figueira, D., Hofman, P., Lasota, S.: Relating timed and register automata. In: Proc. EXPRESS. EPTCS, vol. 41, pp. 61–75 (2010)Google Scholar
  6. 6.
    Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in Succinct and Parametric One-Counter Automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Model Checking Timed Automata with One or Two Clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 387–401. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Memmi, G., Roucairol, G.: Linear Algebra in Net Theory. In: Brauer, W. (ed.) Net Theory and Applications. LNCS, vol. 84, pp. 213–223. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  9. 9.
    Minsky, M.L.: Recursive unsolvability of post’s problem of ”tag” and other topics in theory of turing machines. Ann. Math. 74(3), 437–455 (1961)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Naves, G.: Accessibilité dans les automates temporisés à deux horloges. Rapport de Master, MPRI, Paris, France (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christoph Haase
    • 1
  • Joël Ouaknine
    • 1
  • James Worrell
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations