Measurement of the Cognitive Assembly Planning Impact

  • Christian Büscher
  • Eckart Hauck
  • Daniel Schilberg
  • Sabina Jeschke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7506)


Within highly automated assembly systems, the planning effort forms a large part of production costs. Due to shortening product lifecycles, changing customer demands and therefore an increasing number of ramp-up processes these costs even rise. So assembly systems should reduce these efforts and simultaneously be flexible for quick adaption to changes in products and their variants. A cognitive interaction system in the field of assembly planning systems is developed within the Cluster of Excellence “Integrative production technology for high-wage countries” at RWTH Aachen University which integrates several cognitive capabilities according to human cognition. This approach combines the advantages of automation with the flexibility of humans. In this paper the main principles of the system’s core component – the cognitive control unit – are presented to underline its advantages with respect to traditional assembly systems. Based on this, the actual innovation of this paper is the development of key performance indicators.


Key performance indicators Cognitive Control Self-Optimization Assembly Planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brecher, C., Klocke, F., Schmitt, R., Schuh, G.: Excellence in Production. Apprimus Verlag, Aachen (2007)Google Scholar
  2. 2.
    Mayer, M., Schlick, C., Ewert, D., Behnen, D., Kuz, S., Odenthal, B., Kausch, B.: Automation of robotic assembly processes on the basis of an architecture of human cognition. Production Engineering Research and Development 5(4), 423–431 (2011) ISSN 0944-6524CrossRefGoogle Scholar
  3. 3.
    Pufall, A.A., Fransoo, J.C., de Kok, A.G.: What determines product ramp-up performance?: A review of characteristics based on a case study at Nokia Mobile Phones (BETA publicatie: working paper, No. 228). Technische Universiteit Eindhoven (2007)Google Scholar
  4. 4.
    Winkler, H., Heins, M., Nyhuis, P.: A controlling system based on cause-effect relationships for the ramp-up of production systems. Production Engineering – Research and Development 1(1), 103–111 (2007)CrossRefGoogle Scholar
  5. 5.
    Hauck, E.: Ein kognitives Interaktionssystem zur Ansteuerung einer Montagezelle. VDI Reihe 10, Band 812. 1. Auflage. VDI-Verlag, Düsseldorf (2011)Google Scholar
  6. 6.
    Ewert, D., Thelen, S., Kunze, R., Mayer, M., Schilberg, D., Jeschke, S.: A Graph Based Hybrid Approach of Offline Pre-planning and Online Re-planning for Efficient Assembly under Realtime Constraints. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds.) ICIRA 2010, Part II. LNCS, vol. 6425, pp. 44–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hauck, E., Gramatke, A., Henning, K.: A Software Architecture for Cognitive Technical Systems Suitable for an Assembly Task in a Production Environment. In: Automation Control – Theory and Practice, pp. 13–28. InTech (2009)Google Scholar
  8. 8.
    Hoffmann, J.: FF: the fast-forward planning system. The AI Magazine 22 (2001)Google Scholar
  9. 9.
    Castellini, C., Giunchiglia, E., Tacchella, A., Tacchella, O.: Improvements to satbased conformant planning. In: Proceedings of the 6th European Conference on Planning, ECP 2001 (2001)Google Scholar
  10. 10.
    Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with implicit belief states. In: Proceedings of ICAPS 2005, pp. 71–80 (2005)Google Scholar
  11. 11.
    Kaufman, S.G., Wilson, R.H., Calton, R.E.J.T.L., Ames, A.L.: Automated planning and programming of assembly of fully 3d mechanisms. Technical Report SAND96-0433, Sandia National Laboratories (1996)Google Scholar
  12. 12.
    Thomas, U.: Automatisierte Programmierung von Robotern für Montageaufgaben. Fortschritte in der Robotik 13. Shaker Verlag, Aachen (2008)Google Scholar
  13. 13.
    Zaeh, M.F., Wiesbeck, M.: A Model for Adaptively Generating Assembly Instructions Using State-based Graph. In: Manufacturing Systems and Technologies for the New Frontier, pp. 195–198. Springer (2008)Google Scholar
  14. 14.
    Mayer, M., Odenthal, B., Faber, M., Kabuss, W., Kausch, B., Schlick, C.: Simulation of human cognition in self-optimizing assembly systems. In: Proceedings of the IEA 2009, 17th World Congress on Ergonomics (2009)Google Scholar
  15. 15.
    Homem de Mello, L.S., Sanderson, A.C.: Representations of mechanical assembly sequences. IEEE Transactions on Robotics and Automation 7(2), 211–227 (1991)CrossRefGoogle Scholar
  16. 16.
    Chen, R.-S., Lu, K.-Y., Tai, P.-H.: Optimizing assembly planning through a three-stage integrated approach. International Journal of Production Economics 88(3), 243–256 (2004)CrossRefGoogle Scholar
  17. 17.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (2007)CrossRefGoogle Scholar
  18. 18.
    Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges. Journal of Cognitive Systems Research 10(2), 141–160 (2009)CrossRefGoogle Scholar
  19. 19.
    Schilberg, D.: Architektur eines Datenintegrators zur durchgängigen Kopplung von verteilten numerischen Simulationen. Dissertation, RWTH Aachen (2010)Google Scholar
  20. 20.
    Gerevini, A.E., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. In: Artificial Intelligence, vol. 173, pp. 619–668. Elsevier Science Publishers Ltd. (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Büscher
    • 1
  • Eckart Hauck
    • 2
  • Daniel Schilberg
    • 1
  • Sabina Jeschke
    • 1
  1. 1.Institute of Information Management in Mechanical Engineering IMARWTH Aachen UniversityAachenGermany
  2. 2.Institute for Management Cybernetics IfU e.V.AachenGermany

Personalised recommendations