Adaptive Exponential Sliding Mode Control for Dynamic Tracking of a Nonholonomic Mobile Robot

  • Hasan Mehrjerdi
  • Youmin Zhang
  • Maarouf Saad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7506)


This paper presents an adaptive exponential sliding mode control as a solution to reduce chattering, uncertainties and disturbances for the trajectory tracking of a nonholonomic wheeled mobile robot. Compared to conventional sliding mode control, the exponential sliding mode control reduces chattering on input controls as well as delivering a high dynamic tracking performance in a steady-state mode. An adaptive control law is added to the developed exponential sliding mode control to overcome external disturbances and improve performance of the controller against uncertainties. The developed algorithm instructs the robot to keep moving on the desired trajectory while reducing tracking errors. The experimental testing results on a unicycle mobile robot are presented to demonstrate the performance of the adaptive exponential sliding mode controller against uncertainties and disturbances.


Adaptive exponential sliding mode control Chattering Mobile robot Trajectory tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  2. 2.
    Sankaranarayanan, V., Mahindrakar, A.D.: Control of a class of underactuated mechanical systems using sliding modes. IEEE Transactions on Robotics 25(2), 459–467 (2009)CrossRefGoogle Scholar
  3. 3.
    Shtessel, Y.B., Shkolnikov, I.A., Brown, M.D.J.: An asymptotic second-order smooth sliding mode control. Asian J. Control 5(4), 498–5043 (2003)CrossRefGoogle Scholar
  4. 4.
    Bartoliniand, G., Ferrara, A., Usani, E.: Second-order sliding-mode control of a mobile robot based on a harmonic potential field. IET Control Theory & Applications 2, 807–818 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bartolini, G., Ferrara, A., Pisano, A., Usai, E.: On the convergence systems. Int. J. Control 74, 718–731 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bartolini, G., Pisano, A., Usai, E.: Digital second order sliding mode control for uncertain nonlinear systems. Automatica 37(9), 1371–1377 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Utkin, V.I.: Sliding Modes In Control And Optimization. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
  8. 8.
    Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic based controller of wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)CrossRefGoogle Scholar
  9. 9.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation 16(5), 609–615 (2000)CrossRefGoogle Scholar
  10. 10.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proc. 34th IEEE Conf. Decision Control, pp. 3805–3810 (1995)Google Scholar
  11. 11.
    Park, B., Yoo, S.S., Park, J.B., Chou, Y.H.: Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty. IEEE Transactions on Control Systems Technology 17(1), 207–214 (2009)CrossRefGoogle Scholar
  12. 12.
    Corradin, M.L., Orland, G.: Control of mobile robots with uncertainties in the dynamical model: a discrete time sliding mode approach with experimental results. Control Engineering Practice 10, 23–34 (2002)CrossRefGoogle Scholar
  13. 13.
    Fallah, C.: Etude de la commmande par mode de glissement sur les system mono et multi variables. Master Thesis, Quebec University (ETS), Montreal, Canada (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hasan Mehrjerdi
    • 1
  • Youmin Zhang
    • 1
  • Maarouf Saad
    • 2
  1. 1.Concordia UniversityMontrealCanada
  2. 2.École de Technologie SupérieureMontréalCanada

Personalised recommendations