VIKAMINE – Open-Source Subgroup Discovery, Pattern Mining, and Analytics

  • Martin Atzmueller
  • Florian Lemmerich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7524)

Abstract

This paper presents an overview on the VIKAMINE system for subgroup discovery, pattern mining and analytics. As of VIKAMINE version 2, it is implemented as rich-client platform (RCP) application, based on the Eclipse framework. This provides for a highly-configurable environment, and allows modular extensions using plugins. We present the system, briefly discuss exemplary plugins, and provide a sketch of successful applications.

Keywords

Pattern Mining Subgroup Discovery Analytics Open-Source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Towards Mining Semantic Maturity in Social Bookmarking Systems. In: Proc. Workshop Social Data on the Web, International Semantic Web Conference (2011)Google Scholar
  2. 2.
    Atzmueller, M., Lemmerich, F.: Fast Subgroup Discovery for Continuous Target Concepts. In: Proc. 18th Intl. Symp. Method. Intelligent Systems. Springer (2009)Google Scholar
  3. 3.
    Atzmueller, M., Lemmerich, F., Krause, B., Hotho, A.: Who are the Spammers? Understandable Local Patterns for Concept Description. In: Proc. 7th Conference on Computer Methods and Systems (2009)Google Scholar
  4. 4.
    Atzmueller, M., Mitzlaff, F.: Efficient descriptive community mining. In: Proc. 24th Intl. FLAIRS Conference. AAAI Press (2011)Google Scholar
  5. 5.
    Atzmueller, M., Puppe, F.: Semi-Automatic Visual Subgroup Mining using VIKAMINE. Journal of Universal Computer Science, Visual Data Mining 11(11), 1752–1765 (2005)Google Scholar
  6. 6.
    Gamberger, D., Lavrac, N., Wettschereck, D.: Subgroup Visualization: A Method and Application in Population Screening. In: Proc. 7th Intl. Workshop on Intelligent Data Analysis in Medicine and Pharmacology, IDAMAP 2002 (2002)Google Scholar
  7. 7.
    Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup Discovery with CN2-SD. Journal of Machine Learning Research 5, 153–188 (2004)MathSciNetGoogle Scholar
  8. 8.
    Lemmerich, F., Atzmueller, M.: Modeling Location-based Profiles of Social Image Media using Explorative Pattern Mining. In: Proc. IEEE SocialCom 2011, Workshop on Modeling Social Media (MSM 2011). IEEE Computer Society, Boston (2011)Google Scholar
  9. 9.
    Lemmerich, F., Rohlfs, M., Atzmueller, M.: Fast Discovery of Relevant Subgroup Patterns. In: Proc. 21st Intl. FLAIRS Conference, pp. 428–433. AAAI Press (2010)Google Scholar
  10. 10.
    Puppe, F., Atzmueller, M., Buscher, G., Huettig, M., Lührs, H., Buscher, H.-P.: Application and Evaluation of a Medical Knowledge-System in Sonography (SonoConsult). In: Proc. 18th European Conference on Artificial Intelligence, pp. 683–687 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Atzmueller
    • 1
  • Florian Lemmerich
    • 2
  1. 1.Knowledge and Data Engineering GroupUniversity of KasselKasselGermany
  2. 2.Artificial Intelligence and Applied Informatics GroupUniversity of WuerzburgWuerzburgGermany

Personalised recommendations