Scientific Workflow Management with ADAMS

  • Peter Reutemann
  • Joaquin Vanschoren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7524)


We demonstrate the Advanced Data mining And Machine learning System (ADAMS), a novel workflow engine designed for rapid prototyping and maintenance of complex knowledge workflows. ADAMS does not require the user to manually connect inputs to outputs on a large canvas. It uses a compact workflow representation, control operators, and a simple interface between operators, allowing them to be auto-connected. It contains an extensive library of operators for various types of analysis, and a convenient plug-in architecture to easily add new ones.


scientific workflows machine learning data mining 


  1. 1.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience 18, 1039–1065 (2006)CrossRefGoogle Scholar
  2. 2.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006)Google Scholar
  3. 3.
    Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Data Analysis, Machine Learning and Applications, pp. 319–326 (2008)Google Scholar
  4. 4.
    Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: An overview of workflow system features and capabilities. Future Generation Computer Systems 25, 528–540 (2009)CrossRefGoogle Scholar
  5. 5.
    Bowers, S.: Scientific Workflow, Provenance, and Data Modeling Challenges and Approaches. Data Semantics 1, 19–30 (2012)Google Scholar
  6. 6.
    Holmes, G., Fletcher, D., Reutemann, P.: Predicting Polycyclic Aromatic Hydrocarbon Concentrations in Soil and Water Samples. In: Proceedings of the International Congress on Environmental Modelling and Software, IEMSS (2010)Google Scholar
  7. 7.
    Knobbe, A., Blockeel, H., Koopman, A., Calders, T., Obladen, B., Bosma, C., Galenkamp, H., Koenders, E., Kok, J.: InfraWatch: Data Management of Large Systems for Monitoring Infrastructural Performance. In: IDA Proceedings (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter Reutemann
    • 1
  • Joaquin Vanschoren
    • 2
  1. 1.University of WaikatoHamiltonNew Zealand
  2. 2.Leiden UniversityLeidenNetherlands

Personalised recommendations