An Aspect-Lexicon Creation and Evaluation Tool for Sentiment Analysis Researchers

  • Mus’ab Husaini
  • Ahmet Koçyiğit
  • Dilek Tapucu
  • Berrin Yanikoglu
  • Yücel Saygın
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7524)

Abstract

In this demo paper, we present SARE, a modular and extendable semi-automatic system that 1) assists researchers in building gold-standard lexicons and evaluating their lexicon extraction algorithms; and 2) provides a general and extendable sentiment analysis environment to help researchers analyze the behavior and errors of a core sentiment analysis engine using a particular lexicon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proc. of LREC, vol. 6, pp. 417–422 (2006)Google Scholar
  2. 2.
    Liu, B.: Sentiment analysis and subjectivity. In: Handbook of Natural Language Processing, pp. 627–666 (2010)Google Scholar
  3. 3.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)CrossRefGoogle Scholar
  4. 4.
    Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proc. of the 2003 Conf. of the NAACL, vol. 1, pp. 173–180 (June 2003)Google Scholar
  5. 5.
    Zhai, Z., Liu, B., Xu, H., Jia, P.: Clustering product features for opinion mining. In: Proc. of the 4th ACM International WSDM Conf., pp. 347–354. ACM (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mus’ab Husaini
    • 1
  • Ahmet Koçyiğit
    • 1
  • Dilek Tapucu
    • 1
    • 2
  • Berrin Yanikoglu
    • 1
  • Yücel Saygın
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabancı UniversityIstanbulTurkey
  2. 2.Dept. of Computer EngineeringIzmir Institute of TechnologyIzmirTurkey

Personalised recommendations