Lattice-Based Hierarchical Inner Product Encryption

  • Michel Abdalla
  • Angelo De Caro
  • Karina Mochetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7533)

Abstract

The notion of inner-product encryption (IPE), introduced by Katz, Sahai, and Waters at Eurocrypt 2008, is a generalization of identity-based encryption in which ciphertexts and secret keys are associated to vectors in some finite field. In an IPE scheme, a ciphertext can only be decrypted by a secret key if the vector associated with the latter is orthogonal to that of the ciphertext. In its hierarchical version, first proposed by Okamoto and Takashima (Asiacrypt’09), there exists an additional delegation mechanism which allows users to delegate their decryption capabilities to other users in the system. In this paper, we propose the first construction of a hierarchical inner-product encryption (HIPE) scheme based on lattices assumptions. To achieve this goal, we extend the lattice-based IPE scheme by Agrawal, Freeman, and Vaikuntanathan (Asiacrypt’11) to the hierarchical setting by employing basis delegation technics by Peikert et al. (Eurocrypt’ 10) and by Agrawal et al. (Eurocrypt’10). As the underlying IPE scheme, our new scheme is shown to be weak selective secure based on the difficulty of the learning with errors (LWE) problem in the standard model, as long as the total number of levels in the hierarchy is a constant. As an application, we show how our new primitive can be used to build new chosen-ciphertext secure IPE and wildcarded identity-based encryption schemes.

Keywords

Lattice-based cryptography inner product functional cryptography hierarchical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-Based Encryption Gone Wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner Product Predicates from Learning with Errors. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: ACM STOC Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM Press (May 1996)Google Scholar
  5. 5.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009, pp. 75–86 (2009)Google Scholar
  6. 6.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM Journal on Computing 36(5), 1301–1328 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM Press (May 2008)Google Scholar
  12. 12.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006: 13th Conference on Computer and Communications Security, pp. 89–98. ACM Press (October/November 2006)Google Scholar
  13. 13.
    Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS Annual Symposium on Foundations of Computer Science, pp. 372–381. IEEE Computer Society Press (October 2004)Google Scholar
  16. 16.
    Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner-Products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Okamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM Press (May/June 2009)Google Scholar
  19. 19.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM Press (May 2005)Google Scholar
  20. 20.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michel Abdalla
    • 1
  • Angelo De Caro
    • 2
  • Karina Mochetti
    • 3
  1. 1.Département d’InformatiqueÉcole Normale SupérieureFrance
  2. 2.Dipartimento di Informatica ed ApplicazioniUniversità degli Studi di SalernoItaly
  3. 3.Instituto de ComputaçãoUNICAMPBrazil

Personalised recommendations