Leakage-Resilient Spatial Encryption

  • Michel Abdalla
  • Jill-Jênn Vie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7533)

Abstract

Spatial encryption is a generic public-key cryptosystem where vectors play the role of public keys and secret keys are associated to affine spaces. Any secret key associated to a space can decrypt all ciphertexts encrypted for vectors in that space, and the delegation relation is defined by subspace inclusion. Though several constructions of spatial encryption schemes have been proposed in the literature, none of them are known to remain secure in the leakage-resilient setting, in which the adversary may be capable of learning limited additional information about the master secret key and other secret keys in the system. In this paper, we propose the first spatial encryption scheme achieving leakage resilience in the standard model, based on existing static assumptions over bilinear groups of composite order. Our new scheme is based on the leakageresilient HIBE scheme by Lewko, Rouselakis, and Waters in TCC 2011 and can be seen as a generalization of Moriyama-Doi spatial encryption scheme to the leakage-resilient setting.

Keywords

Spatial encryption leakage resilience 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AGV09]
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. [BFO08]
    Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic Encryption, and Efficient Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)Google Scholar
  3. [BGN05]
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. [BGW05]
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)Google Scholar
  5. [BH08]
    Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption Schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. [BKKV10]
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: FOCS Annual Symposium on Foundations of Computer Science, pp. 501–510. IEEE Computer Society (2010)Google Scholar
  7. [Bon07]
    Boneh, D.: Bilinear Groups of Composite Order (Invited Talk). In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, p. 1. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. [BSW11]
    Boyle, E., Segev, G., Wichs, D.: Fully Leakage-Resilient Signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. [DHLAW10]
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS Annual Symposium on Foundations of Computer Science, pp. 511–520. IEEE Computer Society Press (2010)Google Scholar
  10. [HL02]
    Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. [LLW11]
    Lewko, A.B., Lewko, M., Waters, B.: How to leak on key updates. In: 43rd ACM STOC Annual ACM Symposium on Theory of Computing, pp. 725–734. ACM Press (2011)Google Scholar
  12. [LOS+10]
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. [LRW11]
    Lewko, A., Rouselakis, Y., Waters, B.: Achieving Leakage Resilience through Dual System Encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. [LW10]
    Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. [MD11]
    Moriyama, D., Doi, H.: A fully secure spatial encryption scheme. IEICE Transactions 94-A(1), 28–35 (2011)Google Scholar
  16. [Wat09]
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michel Abdalla
    • 1
  • Jill-Jênn Vie
    • 1
  1. 1.Département d’InformatiqueÉcole Normale SupérieureFrance

Personalised recommendations