Automatic Meshing of Femur Cortical Surfaces from Clinical CT Images

  • Ju Zhang
  • Duane Malcolm
  • Jacqui Hislop-Jambrich
  • C. David L. Thomas
  • Poul Nielsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7599)


We present an automated image-to-mesh workflow that meshes the cortical surfaces of the human femur, from clinical CT images. A piecewise parametric mesh of the femoral surface is customized to the in-image femoral surface by an active shape model. Then, by using this mesh as a first approximation, we segment cortical surfaces via a model of cortical morphology and imaging characteristics. The mesh is then customized further to represent the segmented inner and outer cortical surfaces. We validate the accuracy of the resulting meshes against an established semi-automated method. Root mean square error for the inner and outer cortical meshes were 0.74 mm and 0.89 mm, respectively. Mean mesh thickness absolute error was 0.03 mm with a standard deviation of 0.60 mm. The proposed method produces meshes that are correspondent across subjects, making it suitable for automatic collection of cortical geometry for statistical shape analysis.


Femoral Head Root Mean Square Cortical Thickness Material Point Cortical Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertelsen, P., Clement, J., Thomas, C.: A morphometric study of the cortex of the human femur from early childhood to advanced old age. Forensic Science international 74(1-2), 63–77 (1995)CrossRefGoogle Scholar
  2. 2.
    Bradley, C., Pullan, A., Hunter, P.: Geometric Modeling of the Human Torso Using Cubic Hermite Elements. Biomedical Engineering Society 25, 96–111 (1997)Google Scholar
  3. 3.
    Cootes, T., Taylor, C., Cooper, D., Graham, J., et al.: Active shape models-their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  4. 4.
    Dougherty, G., Newman, D.: Measurement of thickness and density of thin structures by computed tomography: a simulation study. Medical Physics 26, 1341 (1999)CrossRefGoogle Scholar
  5. 5.
    Goodall, C.: Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society. Series B (Methodological) 53(2), 285–339 (1991)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  7. 7.
    Holzer, G., Von Skrbensky, G., Holzer, L., Pichl, W.: Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. Journal of Bone and Mineral Research 24(3), 468–474 (2009)Google Scholar
  8. 8.
    Jolliffe, I.: Principal component analysis, vol. 2. Wiley Online Library (2002)Google Scholar
  9. 9.
    Looker, A.C., Beck, T.J., Orwoll, E.S.: Does body size account for gender differences in femur bone density and geometry? J. Bone Miner. Res. 16(7), 1291–1299 (2001)CrossRefGoogle Scholar
  10. 10.
    Mayhew, P., Thomas, C., Clement, J., Loveridge, N., Beck, T., Bonfield, W., Burgoyne, C., Reeve, J.: Relation between age, femoral neck cortical stability, and hip fracture risk. The Lancet 366(9480), 129–135 (2005)CrossRefGoogle Scholar
  11. 11.
    Peacock, M., Buckwalter, K.A., Persohn, S., Hangartner, T.N., Econs, M.J., Hui, S.: Race and sex differences in bone mineral density and geometry at the femur. Bone 45(2), 218–225 (2009)CrossRefGoogle Scholar
  12. 12.
    Pulkkinen, P., Partanen, J., Jalovaara, P., Jamsa, T.: Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int. 15(4), 274–280 (2004)CrossRefGoogle Scholar
  13. 13.
    Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. ACM Siggraph Computer Graphics 20(4), 151–160 (1986)CrossRefGoogle Scholar
  14. 14.
    Treece, G.M., Gee, A.H., Mayhew, P.M., Poole, K.E.: High resolution cortical bone thickness measurement from clinical CT data. Med. Image Anal. 14(3), 276–290 (2010)CrossRefGoogle Scholar
  15. 15.
    Zdero, R., Bougherara, H., Dubov, A., Shah, S., Zalzal, P., Mahfud, A., Schemitsch, E.: The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 224(7), 831–840 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ju Zhang
    • 1
  • Duane Malcolm
    • 1
  • Jacqui Hislop-Jambrich
    • 2
  • C. David L. Thomas
    • 3
  • Poul Nielsen
    • 1
    • 4
  1. 1.Auckland Bioengineering InstituteThe University of AucklandNew Zealand
  2. 2.Clinical Applications Research CenterToshiba MedicalSydneyAustralia
  3. 3.The Melbourne Dental SchoolThe University of MelbourneAustralia
  4. 4.Department of Engineering ScienceThe University of AucklandNew Zealand

Personalised recommendations