Automatic Fracture Reduction

  • Thomas Albrecht
  • Thomas Vetter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7599)

Abstract

We present a method to automatically reposition the fragments of a broken bone based on surface meshes segmented from CT scans. The result of this virtual fracture reduction is intended to be used as an operation plan for a medical procedure. Particularly in minimally invasive surgery like intramedullary nailing, the correct repositioning of bone fragments is not always apparent or visible without an operation plan. We propose to achieve automatic fracture reduction by fitting the bone fragments to an intact reference bone mesh with a modified Iterative Closest Point (ICP) algorithm. A suitable reference could be the same patient’s contra-lateral bone. In the absence of a CT scan of this bone, we propose to use a statistical shape model as a reference. The shape model is automatically adapted to match the anatomy of the broken bone, apart from the bone’s length, which has to be correctly initialized. Our experiments show that we can limit the rotational alignment error to below 5 degrees, compared to 15 degrees in current medical practice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Blanz, V., Vetter, T.: Reconstructing the complete 3d shape of faces from partial information. Informationstechnik und Technische Informatik 44(6), 1–8 (2002)Google Scholar
  3. 3.
    Feldmar, J., Ayache, N.: Rigid, affine and locally affine registration of free-form surfaces. International Journal of Computer Vision 18(2), 99–119 (1996)CrossRefGoogle Scholar
  4. 4.
    Gong, R., Stewart, J., Abolmaesumi, P.: Reduction of multi-fragment fractures of the distal radius using atlas-based 2d/3d registration. In: Proceedings of the SPIE, Medical Imaging, p. 726137–1 (2009)Google Scholar
  5. 5.
    Jaarsma, R., Pakvis, D., Verdonschot, N., Biert, J., van Kampen, A.: Rotational malalignment after intramedullary nailing of femoral fractures. Journal of Orthopaedic Trauma 18(7), 403 (2004)CrossRefGoogle Scholar
  6. 6.
    Lüthi, M., Albrecht, T., Vetter, T.: Probabilistic Modeling and Visualization of the Flexibility in Morphable Models. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces. LNCS, vol. 5654, pp. 251–264. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Moghari, M.H., Abolmaesumi, P.: Global registration of multiple bone fragments using statistical atlas models: feasibility experiments. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 5374–5377. IEEE (2008)Google Scholar
  8. 8.
    Schroeder, W., Martin, K., Lorensen, B.: The visualization toolkit. Prentice Hall PTR (1998)Google Scholar
  9. 9.
    Westphal, R., Winkelbach, S., Gösling, T., Oszwald, M., Hüfner, T., Krettek, C., Wahl, F.: Automated robot assisted fracture reduction. In: Advances in Robotics Research, pp. 251–262 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Albrecht
    • 1
  • Thomas Vetter
    • 1
  1. 1.University of BaselSwitzerland

Personalised recommendations