Volumetric Real-Time Particle-Based Representation of Large Unstructured Tetrahedral Polygon Meshes

  • Philip Voglreiter
  • Markus Steinberger
  • Dieter Schmalstieg
  • Bernhard Kainz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7599)


In this paper we propose a particle-based volume rendering approach for unstructured, three-dimensional, tetrahedral polygon meshes. We stochastically generate millions of particles per second and project them on the screen in real-time. In contrast to previous rendering techniques of tetrahedral volume meshes, our method does not need a prior depth sorting of geometry. Instead, the rendered image is generated by choosing particles closest to the camera. Furthermore, we use spatial superimposing. Each pixel is constructed from multiple subpixels. This approach not only increases projection accuracy, but allows also a combination of subpixels into one superpixel that creates the well-known translucency effect of volume rendering. We show that our method is fast enough for the visualization of unstructured three-dimensional grids with hard real-time constraints and that it scales well for a high number of particles.


mesh representations volume rendering GPU accelerated particle-based 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avila, R., Taosong, H., Lichan, H., Kaufman, A., Pfister, H., Silva, C., Sobierajski, L., Wang, S.: VolVis: A diversified Volume Visualization System. In: Proceedings of IEEE Conference on Visualization, Visualization 1994, CP3, pp. 31–38 (October 1994)Google Scholar
  2. 2.
    Babuska, I.: Generalized Finite Element Methods: Main Ideas, Results, and Perspective. Security 1(1), 67–103 (2004)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bien, T., Rose, G., Skalej, M.: FEM Modeling of Radio Frequency Ablation in the Spinal Column. In: 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), vol. 5, pp. 1867–1871 (October 2010)Google Scholar
  4. 4.
    Challinger, J.: Scalable parallel Volume Raycasting for nonrectilinear computational Grids. In: Proceedings of the 1993 Symposium on Parallel Rendering, PRS 1993, pp. 81–88. ACM, New York (1993)CrossRefGoogle Scholar
  5. 5.
    Maximo, A., Marroquim, R., Farias, R.: Hardware-Assisted Projected Tetrahedra. Computer Graphics Forum 29(3), 903–912 (2010)CrossRefGoogle Scholar
  6. 6.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  7. 7.
    OsiriX DICOM Viewer public sample image sets. Dicom Image Sets (May 2012),
  8. 8.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag New York, Inc., Secaucus (2005)Google Scholar
  9. 9.
    Rocchini, C., Cignoni, P.: Generating random points in a tetrahedron. J. Graph. Tools 5(4), 9–12 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Sakamoto, N., Nonaka, J., Koyamada, K., Tanaka, S.: Volume Rendering using tiny Particles. In: Eighth IEEE International Symposium on Multimedia, ISM 2006, pp. 734–737 (December 2006)Google Scholar
  11. 11.
    Sakamoto, N., Nonaka, J., Koyamada, K., Tanaka, S.: Particle-based Volume Rendering. In: 2007 6th International Asia-Pacific Symposium on Visualization, APVIS 2007, pp. 129–132 (February 2007)Google Scholar
  12. 12.
    Shirley, P., Tuchman, A.: A polygonal Approximation to direct Scalar Volume Rendering. In: Proceedings of the 1990 Workshop on Volume Visualization, VVS 1990, pp. 63–70. ACM, New York (1990)CrossRefGoogle Scholar
  13. 13.
    Vega-Higuera, F., Hastreiter, P., Fahlbusch, R., Greiner, G.: High performance Volume Splatting for Visualization of neurovascular Data. IEEE Visualization, 271–278 (October 2005)Google Scholar
  14. 14.
    Voglreiter, P., Kainz, B.: Stochastic Particle Based Volume Rendering (February 2012),
  15. 15.
    Zhang, C., Xi, P., Zhang, C.: CUDA-Based Volume Ray-Casting using cubic B-spline. In: 2011 International Conference on Virtual Reality and Visualization (ICVRV), pp. 84–88 (November 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Philip Voglreiter
    • 1
  • Markus Steinberger
    • 1
  • Dieter Schmalstieg
    • 1
  • Bernhard Kainz
    • 1
  1. 1.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria

Personalised recommendations