Cortical Folding Analysis on Patients with Alzheimer’s Disease and Mild Cognitive Impairment

  • David M. Cash
  • Andrew Melbourne
  • Marc Modat
  • M. Jorge Cardoso
  • Matthew J. Clarkson
  • Nick C. Fox
  • Sebastien Ourselin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7512)


Cortical thinning is a widely used and powerful biomarker for measuring disease progression in Alzheimer’s disease (AD). However, there has been little work on the effect of atrophy on the cortical folding patterns. In this study, we examined whether the cortical folding could be used as a biomarker of AD. Cortical folding metrics were computed on 678 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. For each subject, the boundary between grey matter and white matter was extracted using a level set technique. At each point on the boundary two metrics characterising folding, curvedness and shape index, were generated. Joint histograms using these metrics were calculated for five regions of interest (ROIs): frontal, temporal, occipital, and parietal lobes as well as the cingulum. Pixelwise statistical maps were generated from the joint histograms using permutations tests. In each ROI, a significant reduction was observed between controls and AD in areas associated with the sulcal folds, suggesting a sulcal opening associated with neurodegeneration. When comparing to MCI patients, the regions of significance were smaller but overlapping with those regions found comparing controls to AD. It indicates that the differences in cortical folding are progressive and can be detected before formal diagnosis of AD. Our preliminary analysis showed a viable signal in the cortical folding patterns for Alzheimer’s disease that should be explored further.


Mild Cognitively Impaired Cortical Thickness Shape Index Mild Cognitively Impaired Patient Joint Histogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alzheimer’s Association, Alzheimer’s facts and figuresGoogle Scholar
  2. 2.
    Holland, D., Dale, A.M.: Nonlinear registration of longitudinal images and measurement of change in regions of interest. Med. Image Anal. 15(4), 489–497 (2011)CrossRefGoogle Scholar
  3. 3.
    Leung, K.K., Ridgway, G.R., Ourselin, S., Fox, N.C.: Consistent multi-time-point brain atrophy estimation from the boundary shift integral. NeuroImage 59(4), 3995–4005 (2011)CrossRefGoogle Scholar
  4. 4.
    Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97(20), 11050–11055 (2000)CrossRefGoogle Scholar
  5. 5.
    Acosta, O., Bourgeat, P., Zuluaga, M., Fripp, J., Salvado, O., Ourselin, S.: Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps. Med. Image Anal. 13(5), 730–743 (2009)CrossRefGoogle Scholar
  6. 6.
    Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., Pacheco, J., Greve, D.N., Grodstein, F., Wright, C.I., Blacker, D., Rosas, H.D., Sperling, R.A., Atri, A., Growdon, J.H., Hyman, B.T., Morris, J.C., Fischl, B., Buckner, R.L.: The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex 19(3), 497–510 (2009)CrossRefGoogle Scholar
  7. 7.
    Braak, H., Braak, E.: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica 82(4), 239–259 (1991)CrossRefGoogle Scholar
  8. 8.
    Desikan, R.S., Sabuncu, M.R., Schmansky, N.J., Reuter, M., Cabral, H.J., Hess, C.P., Weiner, M.W., Biffi, A., Anderson, C.D., Rosand, J., Salat, D.H., Kemper, T.L., Dale, A.M., Sperling, R.A., Fischl, B.: Selective disruption of the cerebral neocortex in Alzheimer’s disease. PloS One 5(9), e12853 (2010)CrossRefGoogle Scholar
  9. 9.
    Zilles, K., Armstrong, E., Schleicher, A., Kretschmann, H.J.: The human pattern of gyrification in the cerebral cortex. Anat. Embryol. 179, 173–179 (1988)CrossRefGoogle Scholar
  10. 10.
    Armstrong, E., Schleicher, A., Omran, H., Curtis, M., Zilles, K.: The ontogeny of human gyrification. Cerebral Cortex 5(1), 56–63 (1995)CrossRefGoogle Scholar
  11. 11.
    Awate, S.P., Yushkevich, P.A., Song, Z., Licht, D.J., Gee, J.C.: Cerebral cortical folding analysis with multivariate modeling and testing: Studies on gender differences and neonatal development. NeuroImage 53(2), 450–459 (2010)CrossRefGoogle Scholar
  12. 12.
    Luders, E., Thompson, P.M., Narr, K.L., Toga, A.W., Jancke, L., Gaser, C.: A curvature-based approach to estimate local gyrification on the cortical surface. NeuroImage 29(4), 1224–1230 (2006)CrossRefGoogle Scholar
  13. 13.
    Dubois, J., Benders, M., Borradori-Tolsa, C., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S.V., Warfield, S.K., Mangin, J.F., Hüppi, P.S.: Primary cortical folding in the human newborn: an early marker of later functional development.. Brain 131(8), 2028–2041 (2008)CrossRefGoogle Scholar
  14. 14.
    King, R.D., Brown, B., Hwang, M., Jeon, T., George, A.T.: Fractal dimension analysis of the cortical ribbon in mild Alzheimer’s disease. NeuroImage 53(2), 471–479 (2010)CrossRefGoogle Scholar
  15. 15.
    Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics of North America 15(4), 869–877 (2005)CrossRefGoogle Scholar
  16. 16.
    Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., Whitwell, J.L., Ward, C., Dale, A.M., Felmlee, J.P., Gunter, J.L., Hill, D.L.G., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C.S., Krueger, G., Ward, H.A., Metzger, G.J., Scott, K.T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J.P., Fleisher, A.S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., Weiner, M.W.: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. JMRI 27(4), 685–691 (2008)CrossRefGoogle Scholar
  17. 17.
    Freeborough, P.A., Fox, N.C., Kitney, R.I.: Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Computer Methods and Programs in Biomedicine 53(1), 15–25 (1997)CrossRefGoogle Scholar
  18. 18.
    Cardoso, M.J., Clarkson, M.J., Ridgway, G.R., Modat, M., Fox, N.C., Ourselin, S.: LoAd: a locally adaptive cortical segmentation algorithm. NeuroImage 56(3), 1386–1397 (2011)CrossRefGoogle Scholar
  19. 19.
    Hammers, A., Chen, C.H., Lemieux, L., Allom, R., Vossos, S., Free, S.L., Myers, R., Brooks, D.J., Duncan, J.S., Koepp, M.J.: Statistical neuroanatomy of the human inferior frontal gyrus and probabilistic atlas in a standard stereotaxic space. Human Brain Mapping 28(1), 34–48 (2007)CrossRefGoogle Scholar
  20. 20.
    Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Im. 23(7), 903–921 (2004)CrossRefGoogle Scholar
  21. 21.
    Cardoso, M.J., Modat, M., Ourselin, S., Keihaninejad, S., Cash, D.: Multi-STEPS: Multi-label similarity and truth estimation for propagated segmentations. In: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 153–158. IEEE (2012)Google Scholar
  22. 22.
    Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image and Vision Computing 10(8), 557–564 (1992)CrossRefGoogle Scholar
  23. 23.
    Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. The Annals of Statistics 38(5), 2916–2957 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Nichols, T.E., Holmes, A.P.: Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping 15(1), 1–25 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David M. Cash
    • 1
    • 2
  • Andrew Melbourne
    • 1
  • Marc Modat
    • 1
  • M. Jorge Cardoso
    • 1
  • Matthew J. Clarkson
    • 1
  • Nick C. Fox
    • 2
  • Sebastien Ourselin
    • 1
    • 2
  1. 1.Centre for Medical Image ComputingUniversity College of London, UCLUK
  2. 2.Dementia Research CentreUniversity College of London, UCLUK

Personalised recommendations