Longitudinal Image Registration with Non-uniform Appearance Change

  • Istvan Csapo
  • Brad Davis
  • Yundi Shi
  • Mar Sanchez
  • Martin Styner
  • Marc Niethammer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7512)


Longitudinal imaging studies are frequently used to investigate temporal changes in brain morphology. Image intensity may also change over time, for example when studying brain maturation. However, such intensity changes are not accounted for in image similarity measures for standard image registration methods. Hence, (i) local similarity measures, (ii) methods estimating intensity transformations between images, and (iii) metamorphosis approaches have been developed to either achieve robustness with respect to intensity changes or to simultaneously capture spatial and intensity changes. For these methods, longitudinal intensity changes are not explicitly modeled and images are treated as independent static samples. Here, we propose a model-based image similarity measure for longitudinal image registration in the presence of spatially non-uniform intensity change.


Mutual Information Image Registration Transformation Model Gray Matter Intensity Target Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barkovich, A.J., Kjos, B.O., Jackson, D.E., Norman, D.: Normal maturation of the neonatal and infant brain: MR imaging at 1.5T. Radiology 166, 173–180 (1988)Google Scholar
  2. 2.
    Broit, C.: Optimal registration of deformed images. Ph.D. thesis, University of Pennsylvania (1981)Google Scholar
  3. 3.
    Csapo, I., Davis, B., Shi, Y., Sanchez, M., Styner, M., Niethammer, M.: Temporally-Dependent Image Similarity Measure for Longitudinal Analysis. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 99–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Dobbing, J., Sands, J.: Quantitative growth and development of human brain. Archives of Disease in Childhood 48(10), 757–767 (1973)CrossRefGoogle Scholar
  5. 5.
    Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 297–304. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Fekedulegn, D., Siurtain, M.P.M., Colbert, J.J.: Parameter estimation of nonlinear growth models in forestry. Silva Fennica 33(4), 327–336 (1999)Google Scholar
  7. 7.
    Fishbaugh, J., Durrleman, S., Gerig, G.: Estimation of Smooth Growth Trajectories with Controlled Acceleration from Time Series Shape Data. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 401–408. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Friston, K., Ashburner, J., Frith, C., Poline, J., Heather, J.D., Frackowiak, R.: Spatial registration and normalization of images. Human Brain Mapping 2, 165–189 (1995)CrossRefGoogle Scholar
  9. 9.
    Loeckx, D., Slagmolen, P., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using conditional mutual information. IEEE Transactions on Medical Imaging 29(1), 19–29 (2010)CrossRefGoogle Scholar
  10. 10.
    Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision 41(1/2), 61–84 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Roche, A., Guimond, A., Ayache, N., Meunier, J.: Multimodal Elastic Matching of Brain Images. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 511–527. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Sampaio, R.C., Truwit, C.L.: Myelination in the developing brain. In: Handbook of Developmental Cognitive Neuroscience, pp. 35–44. MIT Press (2001)Google Scholar
  13. 13.
    Studholme, C., Drapaca, C., Iordanova, B., Cardenas, V.: Deformation-based mapping of volume change from serial brain mri in the presence of local tissue contrast change. IEEE Transactions on Medical Imaging 25(5), 626–639 (2006)CrossRefGoogle Scholar
  14. 14.
    Styner, M., Knickmeyer, R., Coe, C., Short, S.J., Gilmore, J.: Automatic regional analysis of dti properties in the developmental macaque brain. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6914 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Istvan Csapo
    • 1
  • Brad Davis
    • 3
  • Yundi Shi
    • 1
  • Mar Sanchez
    • 4
  • Martin Styner
    • 1
  • Marc Niethammer
    • 1
    • 2
  1. 1.University of North Carolina at Chapel HillUSA
  2. 2.Biomedical Research Imaging CenterUNC Chapel HillUSA
  3. 3.Kitware, Inc.CarrboroUSA
  4. 4.Emory UniversityAtlantaUSA

Personalised recommendations