Feature Analysis for Parkinson’s Disease Detection Based on Transcranial Sonography Image

  • Lei Chen
  • Johann Hagenah
  • Alfred Mertins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7512)

Abstract

Transcranial sonography (TCS) is a new tool for the diagnosis of Parkinson’s disease (PD) according to a distinct hyperechogenic pattern in the substantia nigra (SN) region. However a procedure including rating scale of SN hyperechogenicity was required for a standard clinical setting with increased use. We applied the feature analysis method to a large TCS dataset that is relevant for clinical practice and includes the variability that is present under real conditions. In order to decrease the influence to the image properties from the different settings of ultrasound machine, we propose a local image analysis method using an invariant scale blob detection for the hyperechogenicity estimation. The local features are extracted from the detected blobs and the watershed regions in half of mesencephalon area. The performance of these features is evaluated by a feature-selection method. The cross validation results show that the local features could be used for PD detection.

Keywords

Parkinson’s Disease Transcranial Sonography Blob detection Feature analysis local feature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, G., Seufert, J., Bogdahn, U., Reichmann, H., Reiners, K.: Degeneration of substantia nigra in chronic Parkinson’s diseasvisualized by transcranial color-coded real-time sonograph. Neurology 45, 182–184 (1995)CrossRefGoogle Scholar
  2. 2.
    Walter, U., Wittstock, M., Benecke, R., Dressler, D.: Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. J. Neural Transm. 109, 191–196 (2002)CrossRefGoogle Scholar
  3. 3.
    Behnke, S., Berg, D., Becker, G.: Does ultrasound disclose a vulnerability factor for Parkinson’s disease? J. Neural 250(suppl.1), I24–I27 (2003)Google Scholar
  4. 4.
    Hagenah, J.M., Hedrich, K., Becker, B., Pramstaller, P.P., Seidel, G., Klein, C.: Distinguishing early-onset PD from dopa-responsive dystonia with transcranial sonography. Neurology 66, 1951–1952 (2006)CrossRefGoogle Scholar
  5. 5.
    Kier, C., Seidel, G., Bregemann, N., Hagenah, J., Klein, C., Aach, T., Mertins, A.: Transcranial Sonography as Early Indicator for Genetic Parkinson’s Disease. In: Vander Sloten, J., Verdonck, P., Nyssen, M., Haueisen, J. (eds.) ECIFMBE 2008. IFMBE Proceedings, pp. 456–459. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Kier, C., Cyrus, C., Seidel, G., Hofmann, U., Aach, T.: Segmenting the substantia nigra in ultrasound images for early diagnosis of Parkinson’s disease. International Journal of Computer Assisted Radiology and Surgery 2, S83 (2007)Google Scholar
  7. 7.
    Berg, D., Steinberger, J.D., Warren Olanow, C., Naidich, T.P., Yousry, T.A.: Milestones in Magnetic Resonance Imaging and Transcranial Sonography of Movement Disorders. Movement Disorders 26 (2011)Google Scholar
  8. 8.
    Chen, L., Seidel, G., Mertins, A.: Multiple Feature Extraction for Early Parkinson Risk Assessment Based on Transcranial Sonography Image. In: Proceedings of 2010 IEEE 17th International Conference on Image Processing (2010)Google Scholar
  9. 9.
    Chen, L., Hagenah, J.M., Mertins, A.: Texture Analysis Using Gabor filter Based on Transcranial Sonography Image. In: Bildverarbeitung Für die Medizin 2011, pp. 249–253 (2011)Google Scholar
  10. 10.
    Lindeberg, T.: Feature Detection with Automatic Scale Selection. International Journal of Computer Vision 30(2) (1998)Google Scholar
  11. 11.
    Ferraz, L., Binefa, X.: A Scale Invariant Interest Point Detector for Discriminative Blob Detection. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 233–240. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)MATHCrossRefGoogle Scholar
  14. 14.
    Devroye, L.: Non-Uniform random variate generation. Springer, New York (1986)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lei Chen
    • 1
    • 3
  • Johann Hagenah
    • 2
  • Alfred Mertins
    • 1
  1. 1.Institute for Signal ProcessingUniversity of LuebeckGermany
  2. 2.Department of NeurologyUniversity Hospital Schleswig-HolsteinGermany
  3. 3.Graduate SchoolUniversity of LuebeckGermany

Personalised recommendations