Advertisement

Improving Accuracy and Power with Transfer Learning Using a Meta-analytic Database

  • Yannick Schwartz
  • Gaël Varoquaux
  • Christophe Pallier
  • Philippe Pinel
  • Jean-Baptiste Poline
  • Bertrand Thirion
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7512)

Abstract

Typical cohorts in brain imaging studies are not large enough for systematic testing of all the information contained in the images. To build testable working hypotheses, investigators thus rely on analysis of previous work, sometimes formalized in a so-called meta-analysis. In brain imaging, this approach underlies the specification of regions of interest (ROIs) that are usually selected on the basis of the coordinates of previously detected effects. In this paper, we propose to use a database of images, rather than coordinates, and frame the problem as transfer learning: learning a discriminant model on a reference task to apply it to a different but related new task. To facilitate statistical analysis of small cohorts, we use a sparse discriminant model that selects predictive voxels on the reference task and thus provides a principled procedure to define ROIs. The benefits of our approach are twofold. First it uses the reference database for prediction, i.e. to provide potential biomarkers in a clinical setting. Second it increases statistical power on the new task. We demonstrate on a set of 18 pairs of functional MRI experimental conditions that our approach gives good prediction. In addition, on a specific transfer situation involving different scanners at different locations, we show that voxel selection based on transfer learning leads to higher detection power on small cohorts.

Keywords

Meta-analysis fMRI multiple comparison machine learning 

References

  1. 1.
    Sutton, A., Abrams, K., Jones, D., Sheldon, T., Song, F.: Methods for meta-analysis in medical research, West Sussex, UK, Chichester, England (2000)Google Scholar
  2. 2.
    Wager, T.D., Lindquist, M.A., Nichols, T.E., Kober, H., Snellenberg, J.X.V.: Evaluating the consistency and specificity of neuroimaging data using meta-analysis. Neuroimage 45(suppl. 1), 210–221 (2009)CrossRefGoogle Scholar
  3. 3.
    Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., Poline, J.B.: Analysis of a large fmri cohort: Statistical and methodological issues for group analyses. Neuroimage 35(1), 105–120 (2007)CrossRefGoogle Scholar
  4. 4.
    Yarkoni, T., Poldrack, R.A., Nichols, T.E., Essen, D.C.V., Wager, T.D.: Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8(8), 665–670 (2011)CrossRefGoogle Scholar
  5. 5.
    Laird, A.R., Lancaster, J.L., Fox, P.T.: Brainmap: the social evolution of a human brain mapping database. Neuroinformatics 3(1), 65–78 (2005)CrossRefGoogle Scholar
  6. 6.
    Salimi-Khorshidi, G., Smith, S.M., Keltner, J.R., Wager, T.D., Nichols, T.E.: Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. Neuroimage 45(3), 810–823 (2009)CrossRefGoogle Scholar
  7. 7.
    Pan, S., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  8. 8.
    Bach, F.: Self-concordant analysis for logistic regression. Electronic Journal of Statistics 4, 384–414 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(4), 417–473 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A supervised clustering approach for fmri-based inference of brain states. Pattern Recognition (2011)Google Scholar
  11. 11.
    Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Bihan, D.L., Poline, J.B., Dehaene, S.: Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC Neurosci. 8, 91 (2007)CrossRefGoogle Scholar
  12. 12.
    Pallier, C., Devauchelle, A.D., Dehaene, S.: Cortical representation of the constituent structure of sentences. Proc. Natl. Acad. Sci. U S A 108(6), 2522–2527 (2011)CrossRefGoogle Scholar
  13. 13.
    Laird, A.R., Fox, P.M., Price, C.J., Glahn, D.C., Uecker, A.M., Lancaster, J.L., Turkeltaub, P.E., Kochunov, P., Fox, P.T.: Ale meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum. Brain Mapp. 25(1), 155–164 (2005)CrossRefGoogle Scholar
  14. 14.
    Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A.: Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16(3 Pt 1), 765–780 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yannick Schwartz
    • 1
    • 2
  • Gaël Varoquaux
    • 1
    • 2
  • Christophe Pallier
    • 3
    • 2
  • Philippe Pinel
    • 3
    • 2
  • Jean-Baptiste Poline
    • 2
  • Bertrand Thirion
    • 1
    • 2
  1. 1.Parietal TeamINRIA Saclay-Île-de-FranceSaclayFrance
  2. 2.CEA, DSV, I2BMGif-Sur-YvetteFrance
  3. 3.Cognitive Neuroimaging Unit, Neurospin CenterINSERM, CEAFrance

Personalised recommendations