Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework

  • L. Chaari
  • F. Forbes
  • T. Vincent
  • P. Ciuciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7512)


Identifying brain hemodynamics in event-related functional MRI (fMRI) data is a crucial issue to disentangle the vascular response from the neuronal activity in the BOLD signal. This question is usually addressed by estimating the so-called Hemodynamic Response Function (HRF). Voxelwise or region-/parcelwise inference schemes have been proposed to achieve this goal but so far all known contributions commit to pre-specified spatial supports for the hemodynamic territories by defining these supports either as individual voxels or a priori fixed brain parcels. In this paper, we introduce a Joint Parcellation-Detection-Estimation (JPDE) procedure that incorporates an adaptive parcel identification step based upon local hemodynamic properties. Efficient inference of both evoked activity, HRF shapes and supports is then achieved using variational approximations. Validation on synthetic and real fMRI data demonstrate the JPDE performance over standard detection estimation schemes and suggest it as a new brain exploration tool.


Mean Square Error fMRI Data Hemodynamic Response Function Spatial Support fMRI Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boynton, G.M., Engel, S.A., Glover, G.H., Heeger, D.J.: Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996)Google Scholar
  2. 2.
    Celeux, G., Forbes, F., Peyrard, N.: EM procedures using mean field-like approximations for Markov model-based image segmentation. Patt. Rec. 36, 131–144 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chaari, L., Forbes, F., Vincent, T., Dojat, M., Ciuciu, P.: Variational Solution to the Joint Detection Estimation of Brain Activity in fMRI. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 260–268. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Ciuciu, P., Poline, J., Marrelec, G., Idier, J., Pallier, C., Benali, H.: Unsupervised robust non-parametric estimation of the hemodynamic response function for any fMRI experiment. IEEE Trans. Med. Imag. 22(10), 1235–1251 (2003)CrossRefGoogle Scholar
  5. 5.
    Forbes, F., Peyrard, N.: Hidden Markov Random Field model selection criteria based on mean field-like approximations. IEEE Trans. Patt. Anal. Mach. Intell. 25(9), 1089–1101 (2003)CrossRefGoogle Scholar
  6. 6.
    Glover, G.H.: Deconvolution of impulse response in event-related BOLD fMRI. Neuroim. 9, 416–429 (1999)CrossRefGoogle Scholar
  7. 7.
    Goutte, C., Nielsen, F., Hansen, L.K.: Modeling the haemodynamic response in fMRI using smooth FIR filters. IEEE Trans. Med. Imag. 19(12), 1188–1201 (2000)CrossRefGoogle Scholar
  8. 8.
    Handwerker, D.A., Ollinger, J.M., Mark, D.: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroim. 21, 1639–1651 (2004)CrossRefGoogle Scholar
  9. 9.
    Kershaw, J., Ardekani, B.A., Kanno, I.: Application of Bayesian inference to fMRI data analysis. IEEE Trans. Med. Imag. 18(12), 1138–1152 (1999)CrossRefGoogle Scholar
  10. 10.
    Makni, S., Idier, J., Vincent, T., Thirion, B., Dehaene-Lambertz, G., Ciuciu, P.: A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. Neuroim. 41(3), 941–969 (2008)CrossRefGoogle Scholar
  11. 11.
    Pinel, P., Thirion, B., Mériaux, S., Jobert, A., Serres, J., Le Bihan, D., Poline, J.B., Dehaene, S.: Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC Neurosci. 8(1), 91 (2007)CrossRefGoogle Scholar
  12. 12.
    Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., Poline, J.B.: Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27(8), 678–693 (2006)CrossRefGoogle Scholar
  13. 13.
    Vincent, T., Risser, L., Ciuciu, P.: Spatially adaptive mixture modeling for analysis of within-subject fMRI time series. IEEE Trans. Med. Imag. 29, 1059–1074 (2010)CrossRefGoogle Scholar
  14. 14.
    Wager, T.D., Vazquez, A., Hernandez, L., Noll, D.C.: Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. Neuroim. 25(1), 206–218 (2005)CrossRefGoogle Scholar
  15. 15.
    Wang, J., Zhu, H., Fan, J., Giovanello, K., Lin, W.: Adaptively and Spatially Estimating the Hemodynamic Response Functions in fMRI. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 269–276. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Woolrich, M., Jenkinson, M., Brady, J., Smith, S.: Fully Bayesian spatio-temporal modelling of fMRI data. IEEE Trans. Med. Imag. 23(2), 213–231 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. Chaari
    • 1
  • F. Forbes
    • 1
  • T. Vincent
    • 1
  • P. Ciuciu
    • 2
  1. 1.Mistis TeamInria Grenoble and LJKFrance
  2. 2.CEA/DSV/I2BM/NeurospinLNAOGif-Sur-YvetteFrance

Personalised recommendations