Regional Manifold Learning for Deformable Registration of Brain MR Images

  • Dong Hye Ye
  • Jihun Hamm
  • Dongjin Kwon
  • Christos Davatzikos
  • Kilian M. Pohl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7512)


We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first learning manifolds for specific regions and then computing region-specific deformations from these manifolds. We then determine deformations for the entire image domain by learning the global manifold in such a way that it preserves the region-specific deformations. We evaluate the accuracy of our method by applying it to the LPBA40 dataset and measuring the overlap of the deformed segmentations. The result shows significant improvement in registration accuracy on cortex regions compared to other state of the art methods.


Manifold Learning Image Registration Brain MRI 


  1. 1.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6 Pt 1), 805–821 (2000)CrossRefGoogle Scholar
  2. 2.
    Choi, Y., Lee, S.: Injectivity conditions of 2D and 3D uniform cubic B-spline functions. Graphical Models 62(6), 411–427 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Gerber, S., Tasdizen, T., Fletcher, P.T., Joshi, S.C., Whitaker, R.T.: Manifold modeling for brain population analysis. Med. Imag. Anal. 14(5), 643–653 (2010)CrossRefGoogle Scholar
  4. 4.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Imag. Anal. 12(6), 731–741 (2008)CrossRefGoogle Scholar
  5. 5.
    Hamm, J., Ye, D.H., Verma, R., Davatzikos, C.: GRAM: A framework for geodesic registration on anatomical manifolds. Med. Imag. Anal. 14(5), 633–642 (2010)CrossRefGoogle Scholar
  6. 6.
    Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1), 115–126 (2006)CrossRefGoogle Scholar
  7. 7.
    Jia, H., Wu, G., Wang, Q., Shen, D.: Absorb: Atlas building by self-organized registration and bundling. Neuroimage 51(3), 1057–1070 (2010)CrossRefGoogle Scholar
  8. 8.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. Tech. Rep. MSR-TR-2004-90, Microsoft Research (MSR) (September 2004)Google Scholar
  9. 9.
    Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Poldrack, R.A., Bilder, R.M., Toga, A.W.: Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39(3), 1064–1080 (2008)CrossRefGoogle Scholar
  10. 10.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: ADNI: Leap: learning embeddings for atlas propagation. Neuroimage 49(2), 1316–1325 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dong Hye Ye
    • 1
  • Jihun Hamm
    • 2
  • Dongjin Kwon
    • 1
  • Christos Davatzikos
    • 1
  • Kilian M. Pohl
    • 1
  1. 1.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Computer ScienceOhio State UniversityColumbusUSA

Personalised recommendations