Open Source Prediction Methods: A Systematic Literature Review

  • M. M. Mahbubul Syeed
  • Terhi Kilamo
  • Imed Hammouda
  • Tarja Systä
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 378)


For the adoption of Open Source Software (OSS) components, knowledge of the project development and associated risks with their use is needed. That, in turn, calls for reliable prediction models to support preventive maintenance and building quality software. In this paper, we perform a systematic literature review on the state-of-the-art on predicting OSS projects considering both code and community dimension. We also distill future direction for research in this field.


Open Source Systematic Literature Review Prediction 


  1. 1.
    Gyimothy, T., Ferenc, R., Siket, I.: Empirical Validation of Object-Oriented Metrics on Open Source Software for Fault Prediction. TSE 30(10), 897–910 (2005)Google Scholar
  2. 2.
    Kitchenham, B.A., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M., Linkman, S.: Systematic literature reviews in software engineering- A tertiary study. Information and Software Technology 52(8), 792–805 (2010)CrossRefGoogle Scholar
  3. 3.
    Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Systems with Applications 36(4), 7346–7354 (2009)CrossRefGoogle Scholar
  4. 4.
    Shatnawi, R., Li, W.: The effectiveness of software metrics in identifying error-prone classes in post-release software evolution. TSE 81(11), 1868–1882 (2008)Google Scholar
  5. 5.
    Turhan, B., Menzies, T., Bener, A.B., Stefano, J.D.: On the relative value of cross-company and within-company data for defect prediction. ESEM 14(5), 540–578 (2009)Google Scholar
  6. 6.
    Subramanyan, R., Krishnan, M.S.: Empirical Analysis of CK Metrics for Object-Oriented Design Complexity: Implications for Software Defects. TSE 29(4), 297–310 (2003)Google Scholar
  7. 7.
    Catal, C.: Software fault prediction: A literature review and current trends. Expert Systems with Applications 38(4), 4626–4636 (2011)CrossRefGoogle Scholar
  8. 8.
    Capiluppi, A., Adams, P.J.: Reassessing Brooks Law for the Free Software Community. IFIP AICT, pp. 274–283 (2009)Google Scholar
  9. 9.
    English, M., Exton, C., Rigon, I., Cleary, B.: Fault detection and prediction in an open-source project. In: PROMISE (2009)Google Scholar
  10. 10.
    Askari, M., Holt, R.: Information theoretic evaluation of change prediction models for large-scale software. In: MSR, pp. 126–132 (2006)Google Scholar
  11. 11.
    Knab, P., Pinzger, M., Bernstein, A.: Predicting Defect Densities in Source Code Files with Decision Tree Learners. In: MSR, pp. 119–125 (2006)Google Scholar
  12. 12.
    Ratzinger, J., Sigmund, T., Vorburger, P., Gall, H.: Mining Software Evolution to Predict Refactoring. In: ESEM, pp. 354–363 (2007)Google Scholar
  13. 13.
    Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution Patterns of Open-Source Software Systems and Communities. In: IWPSE, pp. 76–85 (2002)Google Scholar
  14. 14.
    Bettenburg, N., Hassan, A.E.: Studying the Impact of Social Structures on Software Quality. In: ICPC, pp. 124–133 (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • M. M. Mahbubul Syeed
    • 1
  • Terhi Kilamo
    • 1
  • Imed Hammouda
    • 1
  • Tarja Systä
    • 1
  1. 1.Tampere University of TechnologyFinland

Personalised recommendations